SySLLM: Generating Synthesized Policy Summaries for Reinforcement Learning Agents Using Large Language Models
- URL: http://arxiv.org/abs/2503.10509v1
- Date: Thu, 13 Mar 2025 16:10:14 GMT
- Title: SySLLM: Generating Synthesized Policy Summaries for Reinforcement Learning Agents Using Large Language Models
- Authors: Sahar Admoni, Omer Ben-Porat, Ofra Amir,
- Abstract summary: We present SySLLM, a novel method that employs synthesis summarization, utilizing large language models' (LLMs) extensive world knowledge and ability to capture patterns.<n>SySLLM summaries are preferred over demonstration-based policy summaries and match or surpass their performance in objective agent identification tasks.
- Score: 10.848775419008442
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Policies generated by Reinforcement Learning (RL) algorithms can be difficult to describe to users, as they result from the interplay between complex reward structures and neural network-based representations. This combination often leads to unpredictable behaviors, making policies challenging to analyze and posing significant obstacles to fostering human trust in real-world applications. Global policy summarization methods aim to describe agent behavior through a demonstration of actions in a subset of world-states. However, users can only watch a limited number of demonstrations, restricting their understanding of policies. Moreover, those methods overly rely on user interpretation, as they do not synthesize observations into coherent patterns. In this work, we present SySLLM (Synthesized Summary using LLMs), a novel method that employs synthesis summarization, utilizing large language models' (LLMs) extensive world knowledge and ability to capture patterns, to generate textual summaries of policies. Specifically, an expert evaluation demonstrates that the proposed approach generates summaries that capture the main insights generated by experts while not resulting in significant hallucinations. Additionally, a user study shows that SySLLM summaries are preferred over demonstration-based policy summaries and match or surpass their performance in objective agent identification tasks.
Related papers
- Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
We propose a framework for semi-supervised sentiment analysis.<n>We introduce two prompting strategies to semantically enhance unlabeled text.<n> Experiments show our method achieves remarkable performance over prior semi-supervised methods.
arXiv Detail & Related papers (2025-01-29T12:03:11Z) - LLMs for Generalizable Language-Conditioned Policy Learning under Minimal Data Requirements [50.544186914115045]
This paper presents TEDUO, a novel training pipeline for offline language-conditioned policy learning.<n>TEDUO operates on easy-to-obtain, unlabeled datasets and is suited for the so-called in-the-wild evaluation, wherein the agent encounters previously unseen goals and states.
arXiv Detail & Related papers (2024-12-09T18:43:56Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Privacy Policy Analysis through Prompt Engineering for LLMs [3.059256166047627]
PAPEL (Privacy Policy Analysis through Prompt Engineering for LLMs) is a framework harnessing the power of Large Language Models (LLMs) to automate the analysis of privacy policies.
It aims to streamline the extraction, annotation, and summarization of information from these policies, enhancing their accessibility and comprehensibility without requiring additional model training.
We demonstrate the effectiveness of PAPEL with two applications: (i) annotation and (ii) contradiction analysis.
arXiv Detail & Related papers (2024-09-23T10:23:31Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.<n>RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z) - Large Language Models as General Pattern Machines [64.75501424160748]
We show that pre-trained large language models (LLMs) are capable of autoregressively completing complex token sequences.
Surprisingly, pattern completion proficiency can be partially retained even when the sequences are expressed using tokens randomly sampled from the vocabulary.
In this work, we investigate how these zero-shot capabilities may be applied to problems in robotics.
arXiv Detail & Related papers (2023-07-10T17:32:13Z) - Learning Symbolic Rules over Abstract Meaning Representations for
Textual Reinforcement Learning [63.148199057487226]
We propose a modular, NEuroSymbolic Textual Agent (NESTA) that combines a generic semantic generalization with a rule induction system to learn interpretable rules as policies.
Our experiments show that the proposed NESTA method outperforms deep reinforcement learning-based techniques by achieving better to unseen test games and learning from fewer training interactions.
arXiv Detail & Related papers (2023-07-05T23:21:05Z) - Mimicking Better by Matching the Approximate Action Distribution [48.95048003354255]
We introduce MAAD, a novel, sample-efficient on-policy algorithm for Imitation Learning from Observations.
We show that it requires considerable fewer interactions to achieve expert performance, outperforming current state-of-the-art on-policy methods.
arXiv Detail & Related papers (2023-06-16T12:43:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.