Conformal Prediction Sets for Deep Generative Models via Reduction to Conformal Regression
- URL: http://arxiv.org/abs/2503.10512v1
- Date: Thu, 13 Mar 2025 16:16:23 GMT
- Title: Conformal Prediction Sets for Deep Generative Models via Reduction to Conformal Regression
- Authors: Hooman Shahrokhi, Devjeet Raj Roy, Yan Yan, Venera Arnaoudova, Janaradhan Rao Doppa,
- Abstract summary: We consider the problem of generating valid and small prediction sets from a black-box deep generative model for a given input.<n>We develop a simple and effective conformal inference algorithm referred to as Generative Prediction Sets (GPS)<n>The key insight behind GPS is to exploit the inherent structure within the distribution over the minimum number of samples needed to obtain an admissible output.
- Score: 7.972619160216404
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We consider the problem of generating valid and small prediction sets by sampling outputs (e.g., software code and natural language text) from a black-box deep generative model for a given input (e.g., textual prompt). The validity of a prediction set is determined by a user-defined binary admissibility function depending on the target application. For example, requiring at least one program in the set to pass all test cases in code generation application. To address this problem, we develop a simple and effective conformal inference algorithm referred to as Generative Prediction Sets (GPS). Given a set of calibration examples and black-box access to a deep generative model, GPS can generate prediction sets with provable guarantees. The key insight behind GPS is to exploit the inherent structure within the distribution over the minimum number of samples needed to obtain an admissible output to develop a simple conformal regression approach over the minimum number of samples. Experiments on multiple datasets for code and math word problems using different large language models demonstrate the efficacy of GPS over state-of-the-art methods.
Related papers
- Optimal Algorithms for Augmented Testing of Discrete Distributions [25.818433126197036]
We show that a predictor can indeed reduce the number of samples required for all three property testing tasks.<n>A key advantage of our algorithms is their adaptability to the precision of the prediction.<n>We provide lower bounds to indicate that the improvements in sample complexity achieved by our algorithms are information-theoretically optimal.
arXiv Detail & Related papers (2024-12-01T21:31:22Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Conformal Language Modeling [61.94417935386489]
We propose a novel approach to conformal prediction for generative language models (LMs)
Standard conformal prediction produces prediction sets with rigorous, statistical guarantees.
We demonstrate the promise of our approach on multiple tasks in open-domain question answering, text summarization, and radiology report generation.
arXiv Detail & Related papers (2023-06-16T21:55:08Z) - Conformal Nucleus Sampling [67.5232384936661]
We assess whether a top-$p$ set is indeed aligned with its probabilistic meaning in various linguistic contexts.
We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size.
arXiv Detail & Related papers (2023-05-04T08:11:57Z) - PAC Prediction Sets for Large Language Models of Code [19.071829387911276]
We propose a solution that considers a restricted set of prediction sets that can compactly be represented as partial programs.
This is the first research contribution that generates PAC prediction sets for generative code models.
arXiv Detail & Related papers (2023-02-17T05:32:24Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
We propose fault-aware neural code rankers that can predict the correctness of a sampled program without executing it.
Our fault-aware rankers can significantly increase the pass@1 accuracy of various code generation models.
arXiv Detail & Related papers (2022-06-04T22:01:05Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Minimax rate of consistency for linear models with missing values [0.0]
Missing values arise in most real-world data sets due to the aggregation of multiple sources and intrinsically missing information (sensor failure, unanswered questions in surveys...).
In this paper, we focus on the extensively-studied linear models, but in presence of missing values, which turns out to be quite a challenging task.
This eventually requires to solve a number of learning tasks, exponential in the number of input features, which makes predictions impossible for current real-world datasets.
arXiv Detail & Related papers (2022-02-03T08:45:34Z) - Conformal prediction for text infilling and part-of-speech prediction [0.549690036417587]
We propose inductive conformal prediction algorithms for the tasks of text infilling and part-of-speech prediction.
We analyze the performance of the algorithms in simulations using the Brown Corpus, which contains over 57,000 sentences.
arXiv Detail & Related papers (2021-11-04T02:23:05Z) - Few-shot Conformal Prediction with Auxiliary Tasks [29.034390810078172]
We develop a novel approach to conformal prediction when the target task has limited data available for training.
We obtain substantially tighter prediction sets while maintaining desirable marginal guarantees by casting conformal prediction as a meta-learning paradigm.
We demonstrate the effectiveness of this approach across a number of few-shot classification and regression tasks in natural language processing, computer vision, and computational chemistry for drug discovery.
arXiv Detail & Related papers (2021-02-17T17:46:57Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.