Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
- URL: http://arxiv.org/abs/2505.19361v2
- Date: Tue, 05 Aug 2025 17:37:40 GMT
- Title: Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
- Authors: Mario Leiva, Noel Ngu, Joshua Shay Kricheli, Aditya Taparia, Ransalu Senanayake, Paulo Shakarian, Nathaniel Bastian, John Corcoran, Gerardo Simari,
- Abstract summary: This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction.<n>We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem.<n>Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
- Score: 5.5855749614100825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of pre-trained perception models in novel environments often leads to performance degradation due to distributional shifts. Although recent artificial intelligence approaches for metacognition use logical rules to characterize and filter model errors, improving precision often comes at the cost of reduced recall. This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction. We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem, building on the idea of abductive learning (ABL) but applying it to test-time instead of training. The input predictions and the learned error detection rules derived from each model are encoded in a logic program. We then seek an abductive explanation--a subset of model predictions--that maximizes prediction coverage while ensuring the rate of logical inconsistencies (derived from domain constraints) remains below a specified threshold. We propose two algorithms for this knowledge representation task: an exact method based on Integer Programming (IP) and an efficient Heuristic Search (HS). Through extensive experiments on a simulated aerial imagery dataset featuring controlled, complex distributional shifts, we demonstrate that our abduction-based framework outperforms individual models and standard ensemble baselines, achieving, for instance, average relative improvements of approximately 13.6\% in F1-score and 16.6\% in accuracy across 15 diverse test datasets when compared to the best individual model. Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
Related papers
- Score-based Generative Modeling for Conditional Independence Testing [35.0533359302886]
We propose a novel CI testing method via score-based generative modeling, which achieves precise Type I error control and strong testing power.<n>We theoretically establish the error bound of conditional distributions modeled by score-based generative models and prove the validity of our CI tests.
arXiv Detail & Related papers (2025-05-29T10:10:46Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Learning with Imperfect Models: When Multi-step Prediction Mitigates Compounding Error [25.387541996071093]
Compounding error, where small prediction mistakes accumulate over time, presents a major challenge in learning-based control.<n>One approach to mitigate compounding error is to train multi-step predictors directly, rather than relying on autoregressive rollout of a single-step model.<n>We show that when the model class is well-specified and accurately captures the system dynamics, single-step models achieve lower prediction error.<n>On the other hand, when the model class is misspecified due to partial observability, direct multi-step predictors can significantly reduce bias and thus outperform single-step approaches.
arXiv Detail & Related papers (2025-04-02T14:18:52Z) - Generalization is not a universal guarantee: Estimating similarity to training data with an ensemble out-of-distribution metric [0.09363323206192666]
Failure of machine learning models to generalize to new data is a core problem limiting the reliability of AI systems.<n>We propose a standardized approach for assessing data similarity by constructing a supervised autoencoder for generalizability estimation (SAGE)<n>We show that out-of-the-box model performance increases after SAGE score filtering, even when applied to data from the model's own training and test datasets.
arXiv Detail & Related papers (2025-02-22T19:21:50Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.<n>We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.<n>Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
We introduce a strong notion of invariance that allows for distribution generalization even in the presence of nonlinear, non-identifiable structural functions.<n>We propose the ControlTwicing algorithm to estimate the Boosted Control Function (BCF) using flexible machine-learning techniques.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.