A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1
- URL: http://arxiv.org/abs/2503.10635v1
- Date: Thu, 13 Mar 2025 17:59:55 GMT
- Title: A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1
- Authors: Zhaoyi Li, Xiaohan Zhao, Dong-Dong Wu, Jiacheng Cui, Zhiqiang Shen,
- Abstract summary: Transfer-based targeted attacks on large vision-language models (LVLMs) often fail against black-box commercial LVLMs.<n>We propose an approach that refines semantic clarity by encoding explicit semantic details within local regions.<n>Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods.
- Score: 24.599707290204524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.
Related papers
- Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
We investigate a critical vulnerability in Large Language Models (LLMs)
This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context.
We propose an efficient tree-based search methodology to automatically generate CDV examples.
arXiv Detail & Related papers (2025-02-03T18:43:36Z) - Model Hijacking Attack in Federated Learning [19.304332176437363]
HijackFL is the first-of-its-kind hijacking attack against the global model in federated learning.
It aims to force the global model to perform a different task from its original task without the server or benign client noticing.
We conduct extensive experiments on four benchmark datasets and three popular models.
arXiv Detail & Related papers (2024-08-04T20:02:07Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Semantic Adversarial Attacks via Diffusion Models [30.169827029761702]
Semantic adversarial attacks focus on changing semantic attributes of clean examples, such as color, context, and features.
We propose a framework to quickly generate a semantic adversarial attack by leveraging recent diffusion models.
Our approaches achieve approximately 100% attack success rate in multiple settings with the best FID as 36.61.
arXiv Detail & Related papers (2023-09-14T02:57:48Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z) - Mixed Precision Quantization to Tackle Gradient Leakage Attacks in
Federated Learning [1.7205106391379026]
Federated Learning (FL) enables collaborative model building among a large number of participants without the need for explicit data sharing.
This approach shows vulnerabilities when privacy inference attacks are applied to it.
In particular, in the event of a gradient leakage attack, which has a higher success rate in retrieving sensitive data from the model gradients, FL models are at higher risk due to the presence of communication in their inherent architecture.
arXiv Detail & Related papers (2022-10-22T04:24:32Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Virtual Data Augmentation: A Robust and General Framework for
Fine-tuning Pre-trained Models [51.46732511844122]
Powerful pre-trained language models (PLM) can be fooled by small perturbations or intentional attacks.
We present Virtual Data Augmentation (VDA), a general framework for robustly fine-tuning PLMs.
Our approach is able to improve the robustness of PLMs and alleviate the performance degradation under adversarial attacks.
arXiv Detail & Related papers (2021-09-13T09:15:28Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.