Breaking Focus: Contextual Distraction Curse in Large Language Models
- URL: http://arxiv.org/abs/2502.01609v1
- Date: Mon, 03 Feb 2025 18:43:36 GMT
- Title: Breaking Focus: Contextual Distraction Curse in Large Language Models
- Authors: Yue Huang, Yanbo Wang, Zixiang Xu, Chujie Gao, Siyuan Wu, Jiayi Ye, Xiuying Chen, Pin-Yu Chen, Xiangliang Zhang,
- Abstract summary: We investigate a critical vulnerability in Large Language Models (LLMs)
This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context.
We propose an efficient tree-based search methodology to automatically generate CDV examples.
- Score: 68.4534308805202
- License:
- Abstract: Recent advances in Large Language Models (LLMs) have revolutionized generative systems, achieving excellent performance across diverse domains. Although these models perform well in controlled environments, their real-world applications frequently encounter inputs containing both essential and irrelevant details. Our investigation has revealed a critical vulnerability in LLMs, which we term Contextual Distraction Vulnerability (CDV). This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context. To systematically investigate this vulnerability, we propose an efficient tree-based search methodology to automatically generate CDV examples. Our approach successfully generates CDV examples across four datasets, causing an average performance degradation of approximately 45% in state-of-the-art LLMs. To address this critical issue, we explore various mitigation strategies and find that post-targeted training approaches can effectively enhance model robustness against contextual distractions. Our findings highlight the fundamental nature of CDV as an ability-level challenge rather than a knowledge-level issue since models demonstrate the necessary knowledge by answering correctly in the absence of distractions. This calls the community's attention to address CDV during model development to ensure reliability. The code is available at https://github.com/wyf23187/LLM_CDV.
Related papers
- HarmLevelBench: Evaluating Harm-Level Compliance and the Impact of Quantization on Model Alignment [1.8843687952462742]
This paper aims to address gaps in the current literature on jailbreaking techniques and the evaluation of LLM vulnerabilities.
Our contributions include the creation of a novel dataset designed to assess the harmfulness of model outputs across multiple harm levels.
We provide a comprehensive benchmark of state-of-the-art jailbreaking attacks, specifically targeting the Vicuna 13B v1.5 model.
arXiv Detail & Related papers (2024-11-11T10:02:49Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows" [74.7488607599921]
FaithEval is a benchmark to evaluate the faithfulness of large language models (LLMs) in contextual scenarios.
FaithEval comprises 4.9K high-quality problems in total, validated through a rigorous four-stage context construction and validation framework.
arXiv Detail & Related papers (2024-09-30T06:27:53Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
This paper thoroughly analyses large language models' capabilities in detecting vulnerabilities within source code.
We evaluate the performance of six open-source models that are specifically trained for vulnerability detection against six general-purpose LLMs.
arXiv Detail & Related papers (2024-08-29T10:00:57Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.
Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.
We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - Learning Robust Representation for Clustering through Locality
Preserving Variational Discriminative Network [16.259673823482665]
Variational Deep Embedding achieves great success in various clustering tasks.
VaDE suffers from two problems: 1) it is fragile to the input noise; 2) it ignores the locality information between the neighboring data points.
We propose a joint learning framework that improves VaDE with a robust embedding discriminator and a local structure constraint.
arXiv Detail & Related papers (2020-12-25T02:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.