GoT: Unleashing Reasoning Capability of Multimodal Large Language Model for Visual Generation and Editing
- URL: http://arxiv.org/abs/2503.10639v1
- Date: Thu, 13 Mar 2025 17:59:59 GMT
- Title: GoT: Unleashing Reasoning Capability of Multimodal Large Language Model for Visual Generation and Editing
- Authors: Rongyao Fang, Chengqi Duan, Kun Wang, Linjiang Huang, Hao Li, Shilin Yan, Hao Tian, Xingyu Zeng, Rui Zhao, Jifeng Dai, Xihui Liu, Hongsheng Li,
- Abstract summary: Generation Chain-of-Thought (GoT) is a novel paradigm that enables generation and editing through an explicit language reasoning process.<n>GoT transforms conventional text-to-image generation and editing into a reasoning-guided framework.
- Score: 66.33454784945293
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current image generation and editing methods primarily process textual prompts as direct inputs without reasoning about visual composition and explicit operations. We present Generation Chain-of-Thought (GoT), a novel paradigm that enables generation and editing through an explicit language reasoning process before outputting images. This approach transforms conventional text-to-image generation and editing into a reasoning-guided framework that analyzes semantic relationships and spatial arrangements. We define the formulation of GoT and construct large-scale GoT datasets containing over 9M samples with detailed reasoning chains capturing semantic-spatial relationships. To leverage the advantages of GoT, we implement a unified framework that integrates Qwen2.5-VL for reasoning chain generation with an end-to-end diffusion model enhanced by our novel Semantic-Spatial Guidance Module. Experiments show our GoT framework achieves excellent performance on both generation and editing tasks, with significant improvements over baselines. Additionally, our approach enables interactive visual generation, allowing users to explicitly modify reasoning steps for precise image adjustments. GoT pioneers a new direction for reasoning-driven visual generation and editing, producing images that better align with human intent. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/rongyaofang/GoT.
Related papers
- ControlThinker: Unveiling Latent Semantics for Controllable Image Generation through Visual Reasoning [76.2503352325492]
ControlThinker is a novel framework that employs a "comprehend-then-generate" paradigm.<n>Latent semantics from control images are mined to enrich text prompts.<n>This enriched semantic understanding then seamlessly aids in image generation without the need for additional complex modifications.
arXiv Detail & Related papers (2025-06-04T05:56:19Z) - RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning [88.14234949860105]
RePrompt is a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning.<n>Our approach enables end-to-end training without human-annotated data.
arXiv Detail & Related papers (2025-05-23T06:44:26Z) - GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning [47.592351387052545]
GoT-R1 is a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation.<n>We propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output.<n> Experimental results demonstrate significant improvements on T2I-CompBench benchmark.
arXiv Detail & Related papers (2025-05-22T17:59:58Z) - Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models [20.19571676239579]
We introduce a novel diffusion-based framework to enhance the alignment of generated images with their corresponding descriptions.
Our framework is built upon a comprehensive analysis of inconsistency phenomena, categorizing them based on their manifestation in the image.
We then integrate a state-of-the-art controllable image generation model with a visual text generation module to generate an image that is consistent with the original prompt.
arXiv Detail & Related papers (2024-06-24T06:12:16Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image
Generation [121.45667242282721]
We propose a coarse-to-fine paradigm to achieve layout planning and image generation.
Our proposed method outperforms the state-of-the-art models in terms of photorealistic layout and image generation.
arXiv Detail & Related papers (2023-08-09T17:45:04Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - Zero-shot Generation of Coherent Storybook from Plain Text Story using
Diffusion Models [43.32978092618245]
We present a novel neural pipeline for generating a coherent storybook from the plain text of a story.
We leverage a combination of a pre-trained Large Language Model and a text-guided Latent Diffusion Model to generate coherent images.
arXiv Detail & Related papers (2023-02-08T06:24:06Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
We present a new framework that takes text-to-image synthesis to the realm of image-to-image translation.
Our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text.
arXiv Detail & Related papers (2022-11-22T20:39:18Z) - StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story
Continuation [76.44802273236081]
We develop a model StoryDALL-E for story continuation, where the generated visual story is conditioned on a source image.
We show that our retro-fitting approach outperforms GAN-based models for story continuation and facilitates copying of visual elements from the source image.
Overall, our work demonstrates that pretrained text-to-image synthesis models can be adapted for complex and low-resource tasks like story continuation.
arXiv Detail & Related papers (2022-09-13T17:47:39Z) - Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense
in Text Generation Models [12.488828126859376]
We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation.
We call our approach VisCTG: Visually Grounded Concept-to-Text Generation.
arXiv Detail & Related papers (2021-09-08T19:38:11Z) - Cycle-Consistent Inverse GAN for Text-to-Image Synthesis [101.97397967958722]
We propose a novel unified framework of Cycle-consistent Inverse GAN for both text-to-image generation and text-guided image manipulation tasks.
We learn a GAN inversion model to convert the images back to the GAN latent space and obtain the inverted latent codes for each image.
In the text-guided optimization module, we generate images with the desired semantic attributes by optimizing the inverted latent codes.
arXiv Detail & Related papers (2021-08-03T08:38:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.