論文の概要: Test-Time Discovery via Hashing Memory
- arxiv url: http://arxiv.org/abs/2503.10699v1
- Date: Wed, 12 Mar 2025 06:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:02.777467
- Title: Test-Time Discovery via Hashing Memory
- Title(参考訳): ハッシュメモリによるテスト時間発見
- Authors: Fan Lyu, Tianle Liu, Zhang Zhang, Fuyuan Hu, Liang Wang,
- Abstract要約: テスト時間ディスカバリ(TTD)は、テスト中のクラスシフトに対処する新しいタスクである。
TTDの重要な課題は、新たに発見されたクラスと、すでに特定されているクラスを区別することである。
本稿では,クラス発見を向上する学習不要なハッシュベースのメモリ機構を提案する。
- 参考スコア(独自算出の注目度): 15.968571945547133
- License:
- Abstract: We introduce Test-Time Discovery (TTD) as a novel task that addresses class shifts during testing, requiring models to simultaneously identify emerging categories while preserving previously learned ones. A key challenge in TTD is distinguishing newly discovered classes from those already identified. To address this, we propose a training-free, hash-based memory mechanism that enhances class discovery through fine-grained comparisons with past test samples. Leveraging the characteristics of unknown classes, our approach introduces hash representation based on feature scale and directions, utilizing Locality-Sensitive Hashing (LSH) for efficient grouping of similar samples. This enables test samples to be easily and quickly compared with relevant past instances. Furthermore, we design a collaborative classification strategy, combining a prototype classifier for known classes with an LSH-based classifier for novel ones. To enhance reliability, we incorporate a self-correction mechanism that refines memory labels through hash-based neighbor retrieval, ensuring more stable and accurate class assignments. Experimental results demonstrate that our method achieves good discovery of novel categories while maintaining performance on known classes, establishing a new paradigm in model testing. Our code is available at https://github.com/fanlyu/ttd.
- Abstract(参考訳): 我々は、テスト中にクラスシフトに対処する新しいタスクとして、テスト時間ディスカバリ(TTD)を導入します。
TTDの重要な課題は、新たに発見されたクラスと、すでに特定されているクラスを区別することである。
そこで本研究では,過去のテストサンプルとの微妙な比較によってクラス発見を促進できる,学習不要のハッシュベースのメモリ機構を提案する。
提案手法は, 特徴尺度と方向に基づくハッシュ表現を導入し, 類似したサンプルの効率的なグループ化にLocality-Sensitive Hashing (LSH) を利用する。
これにより、テストサンプルは、関連する過去のインスタンスと簡単に素早く比較できる。
さらに、既知のクラスに対するプロトタイプ分類器と、新しいクラスに対するLSHに基づく分類器を組み合わせることで、協調的な分類戦略を設計する。
信頼性を高めるために,ハッシュベースの隣接検索によりメモリラベルを洗練し,より安定かつ正確なクラス割り当てを保証する自己補正機構を組み込んだ。
実験結果から,本手法は既知のクラスの性能を維持しつつ,新たなカテゴリの発見を達成し,モデルテストにおける新たなパラダイムを確立した。
私たちのコードはhttps://github.com/fanlyu/ttd.comで公開されています。
関連論文リスト
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
本稿では,C-GCD(Continuous Generalized Category Discovery)の未探索課題について考察する。
C-GCDは、学習済みのクラスを認識する能力を維持しながら、ラベルのないデータから新しいクラスを漸進的に発見することを目的としている。
本稿では,ハードネスを意識したプロトタイプサンプリングとソフトエントロピー正規化を特徴とする,偏りのある学習フレームワークであるHappyを紹介する。
論文 参考訳(メタデータ) (2024-10-09T04:18:51Z) - STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay [76.06127233986663]
テスト時間適応(TTA)は、トレーニングデータとテストデータの間の分散シフトに、未ラベルのデータのみを用いて対処することを目的としている。
本稿では,サンプル認識とオフリエ拒絶の両方を行う問題に注意を払っている。
本稿では,STAble Memory rePlay (STAMP) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T16:25:41Z) - Class incremental learning with probability dampening and cascaded gated classifier [4.285597067389559]
本稿では, Margin Dampening と Cascaded Scaling という新たな漸進正規化手法を提案する。
1つ目は、ソフト制約と知識蒸留のアプローチを組み合わせて、過去の知識を保存し、新しいパターンを忘れることを可能にします。
提案手法は,複数のベンチマークにおいて,確立されたベースラインで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-02-02T09:33:07Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - A Multi-Head Model for Continual Learning via Out-of-Distribution Replay [16.189891444511755]
連続学習(CL)における破滅的忘れ(CF)に対する多くのアプローチが提案されている。
本稿では,MOREと呼ばれるトランスフォーマーネットワークを用いて,タスク毎に個別の分類器(頭部)を構築する手法を提案する。
論文 参考訳(メタデータ) (2022-08-20T19:17:12Z) - Class-incremental Novel Class Discovery [76.35226130521758]
クラス増進型新規クラス発見(class-iNCD)の課題について検討する。
基本クラスに関する過去の情報を忘れないようにする,クラスiNCDのための新しい手法を提案する。
3つの共通ベンチマークで実施した実験により,本手法が最先端の手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2022-07-18T13:49:27Z) - ClaRe: Practical Class Incremental Learning By Remembering Previous
Class Representations [9.530976792843495]
クラスインクリメンタル学習(cil)は、新しい概念を完全に学習する傾向があるが、古いデータのパフォーマンスと正確性を犠牲にしない。
ClaReは、各インクリメントで学んだクラスの表現を覚えておくことで、CILの効率的なソリューションです。
ClaReは、以前に学習したクラスの分布から多様なインスタンスを生成するため、従来の方法よりも優れた一般化がある。
論文 参考訳(メタデータ) (2021-03-29T10:39:42Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。