Exploration of Hepatitis B Virus Infection Dynamics through Virology-Informed Neural Network: A Novel Artificial Intelligence Approach
- URL: http://arxiv.org/abs/2503.10708v1
- Date: Wed, 12 Mar 2025 20:02:31 GMT
- Title: Exploration of Hepatitis B Virus Infection Dynamics through Virology-Informed Neural Network: A Novel Artificial Intelligence Approach
- Authors: Bikram Das, Rupchand Sutradhar, D C Dalal,
- Abstract summary: We introduce Virology-Informed Neural Networks (VINNs), a powerful tool for capturing the dynamics of viral infection when data of some compartments of the model are not available.<n>VINNs offer an alternative approach to traditional numerical methods for solving system of differential equations.<n>We apply this VINN technique on a recently proposed hepatitis B virus (HBV) infection dynamics model to predict the transmission of the infection within the liver more accurately.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce Virology-Informed Neural Networks (VINNs), a powerful tool for capturing the intricate dynamics of viral infection when data of some compartments of the model are not available. VINNs, an extension of the widely known Physics-Informed Neural Networks (PINNs), offer an alternative approach to traditional numerical methods for solving system of differential equations. We apply this VINN technique on a recently proposed hepatitis B virus (HBV) infection dynamics model to predict the transmission of the infection within the liver more accurately. This model consists of four compartments, namely uninfected and infected hepatocytes, rcDNA-containing capsids, and free viruses, along with the consideration of capsid recycling. Leveraging the power of VINNs, we study the impacts of variations in parameter range, experimental noise, data variability, network architecture, and learning rate in this work. In order to demonstrate the robustness and effectiveness of VINNs, we employ this approach on the data collected from nine HBV-infceted chimpanzees, and it is observed that VINNs can effectively estimate the model parameters. VINNs reliably capture the dynamics of infection spread and accurately predict their future progression using real-world data. Furthermore, VINNs efficiently identify the most influential parameters in HBV dynamics based solely on experimental data from the capsid component. It is also expected that this framework can be extended beyond viral dynamics, providing a powerful tool for uncovering hidden patterns and complex interactions across various scientific and engineering domains.
Related papers
- A Hybrid CNN-Transformer Model for Heart Disease Prediction Using Life History Data [4.043923997825091]
This study proposes a hybrid model of a convolutional neural network (CNN) and a Transformer to predict and diagnose heart disease.<n>Based on CNN's strength in detecting local features and the Transformer's high capacity in sensing global relations, the model is able to successfully detect risk factors of heart disease.
arXiv Detail & Related papers (2025-03-03T23:12:55Z) - A data augmentation strategy for deep neural networks with application to epidemic modelling [2.4537195774258556]
We present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced SIR-type model.
Our results show that a robust data augmentation strategy trough suitable data-driven models can improve the reliability of Feed-Forward Neural Networks (FNNs) and Autoregressive Networks (NARs)
This approach enhances the ability to handle nonlinear dynamics and offers scalable, data-driven solutions for epidemic forecasting.
arXiv Detail & Related papers (2025-02-28T13:24:49Z) - Physics-informed deep learning for infectious disease forecasting [3.3618265137908527]
We propose a new infectious disease forecasting model based on physics-informed neural networks (PINNs)
Using state-level COVID-19 data from California, we demonstrate that the PINN model accurately predicts cases, deaths, and hospitalizations.
arXiv Detail & Related papers (2025-01-16T05:07:05Z) - Neuromorphic Spiking Neural Network Based Classification of COVID-19 Spike Sequences [4.497217246897902]
We propose a neural network-based (NN) mechanism to perform an efficient analysis of the SARS-CoV-2 data.<n>In this paper, we introduce a pipeline that first converts the spike protein sequences into a fixed-length numerical representation and then uses Neuromorphic Spiking Neural Network to classify those sequences.
arXiv Detail & Related papers (2024-12-19T10:26:31Z) - Securing Healthcare with Deep Learning: A CNN-Based Model for medical IoT Threat Detection [0.44998333629984877]
The integration of the Internet of Medical Things (IoMT) into healthcare systems has significantly enhanced patient care.<n>This paper presents a novel approach based on Convolutional Neural Networks (CNNs) for detecting cyberattacks within IoMT environments.
arXiv Detail & Related papers (2024-10-26T14:27:17Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks [23.95944607153291]
A physics-informed neural network (PINN) embedded with the susceptible-infected-removed (SIR) model is devised to understand the temporal evolution dynamics of infectious diseases.
The method is applied to COVID-19 data reported for Germany and shows that it can accurately identify and predict virus spread trends.
arXiv Detail & Related papers (2023-02-17T10:36:58Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
We have recently studied covariance neural networks (VNNs) that operate on sample covariance matrices.
In this paper, we demonstrate the utility of VNNs in inferring brain age using cortical thickness data.
Our results show that VNNs exhibit multi-scale and multi-site transferability for inferring brain age
In the context of brain age in Alzheimer's disease (AD), our experiments show that i) VNN outputs are interpretable as brain age predicted using VNNs is significantly elevated for AD with respect to healthy subjects.
arXiv Detail & Related papers (2022-10-28T18:58:34Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.