On the Identifiability of Causal Abstractions
- URL: http://arxiv.org/abs/2503.10834v1
- Date: Thu, 13 Mar 2025 19:34:05 GMT
- Title: On the Identifiability of Causal Abstractions
- Authors: Xiusi Li, Sékou-Oumar Kaba, Siamak Ravanbakhsh,
- Abstract summary: Causal representation learning enhances machine learning models' robustness and generalizability.<n>We focus on a family of CRL methods that uses contrastive data pairs in the observable space to identify the latent causal model.<n>We introduce a theoretical framework that calculates the degree to which we can identify a causal model, given a set of possible interventions.
- Score: 15.785002371773139
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Causal representation learning (CRL) enhances machine learning models' robustness and generalizability by learning structural causal models associated with data-generating processes. We focus on a family of CRL methods that uses contrastive data pairs in the observable space, generated before and after a random, unknown intervention, to identify the latent causal model. (Brehmer et al., 2022) showed that this is indeed possible, given that all latent variables can be intervened on individually. However, this is a highly restrictive assumption in many systems. In this work, we instead assume interventions on arbitrary subsets of latent variables, which is more realistic. We introduce a theoretical framework that calculates the degree to which we can identify a causal model, given a set of possible interventions, up to an abstraction that describes the system at a higher level of granularity.
Related papers
- Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment [10.814585613336778]
Causal representation learning aims to combine the core strengths of machine learning and causality.
This thesis investigates what is possible for CRL without direct supervision, and thus contributes to its theoretical foundations.
arXiv Detail & Related papers (2024-06-19T09:14:40Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
Causal representation learning argues that factors of variation in a dataset are, in fact, causally related.
We propose a fully unsupervised representation learning method that considers a data generation process with a latent additive noise model.
arXiv Detail & Related papers (2023-07-11T18:12:05Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - On the Interventional Kullback-Leibler Divergence [11.57430292133273]
We introduce the Interventional Kullback-Leibler divergence to quantify both structural and distributional differences between causal models.
We propose a sufficient condition on the intervention targets to identify subsets of observed variables on which the models provably agree or disagree.
arXiv Detail & Related papers (2023-02-10T17:03:29Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Do-calculus enables causal reasoning with latent variable models [2.294014185517203]
Latent variable models (LVMs) are probabilistic models where some of the variables are hidden during training.
We show that causal reasoning can enhance a broad class of LVM long established in the probabilistic modeling community.
arXiv Detail & Related papers (2021-02-12T17:12:53Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.