Efficient Reachability Analysis for Convolutional Neural Networks Using Hybrid Zonotopes
- URL: http://arxiv.org/abs/2503.10840v1
- Date: Thu, 13 Mar 2025 19:45:26 GMT
- Title: Efficient Reachability Analysis for Convolutional Neural Networks Using Hybrid Zonotopes
- Authors: Yuhao Zhang, Xiangru Xu,
- Abstract summary: Existing set propagation-based reachability analysis methods for feedforward neural networks often struggle to achieve both scalability and accuracy.<n>This work presents a novel set-based approach for computing the reachable sets of convolutional neural networks.
- Score: 4.32258850473064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feedforward neural networks are widely used in autonomous systems, particularly for control and perception tasks within the system loop. However, their vulnerability to adversarial attacks necessitates formal verification before deployment in safety-critical applications. Existing set propagation-based reachability analysis methods for feedforward neural networks often struggle to achieve both scalability and accuracy. This work presents a novel set-based approach for computing the reachable sets of convolutional neural networks. The proposed method leverages a hybrid zonotope representation and an efficient neural network reduction technique, providing a flexible trade-off between computational complexity and approximation accuracy. Numerical examples are presented to demonstrate the effectiveness of the proposed approach.
Related papers
- Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
Many deep neural networks have been used to solve Ising models, including autoregressive neural networks, convolutional neural networks, recurrent neural networks, and graph neural networks.
Here we propose a variational autoregressive architecture with a message passing mechanism, which can effectively utilize the interactions between spin variables.
The new network trained under an annealing framework outperforms existing methods in solving several prototypical Ising spin Hamiltonians, especially for larger spin systems at low temperatures.
arXiv Detail & Related papers (2024-04-09T11:27:07Z) - An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
This paper presents a sample-free moment propagation technique to accurately characterize the input-output distributions of neural networks.
A key enabler of our technique is an analytic solution for the covariance of random variables passed through nonlinear activation functions.
The wide applicability and merits of the proposed technique are shown in experiments analyzing the input-output distributions of trained neural networks and training Bayesian neural networks.
arXiv Detail & Related papers (2024-03-24T14:08:24Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Distributionally Robust Statistical Verification with Imprecise Neural Networks [3.9456691693452552]
A particularly challenging problem in AI safety is providing guarantees on the behavior of high-dimensional autonomous systems.<n>This paper proposes a novel approach based on uncertainty quantification using concepts from probabilities.<n>We show that our approach can provide useful and scalable guarantees for high-dimensional systems.
arXiv Detail & Related papers (2023-08-28T18:06:24Z) - Safety Verification of Neural Network Control Systems Using Guaranteed
Neural Network Model Reduction [3.0839245814393728]
A concept of model reduction precision is proposed to describe the guaranteed distance between the outputs of a neural network and its reduced-size version.
A reachability-based algorithm is proposed to accurately compute the model reduction precision.
An algorithm to compute the reachable set of the original system is developed, which is able to support much more computationally efficient safety verification processes.
arXiv Detail & Related papers (2023-01-17T03:25:57Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Sparse Interaction Additive Networks via Feature Interaction Detection
and Sparse Selection [10.191597755296163]
We develop a tractable selection algorithm to efficiently identify the necessary feature combinations.
Our proposed Sparse Interaction Additive Networks (SIAN) construct a bridge from simple and interpretable models to fully connected neural networks.
arXiv Detail & Related papers (2022-09-19T19:57:17Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Robust and integrative Bayesian neural networks for likelihood-free
parameter inference [0.0]
State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference.
This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and directly estimates the posterior density using categorical distributions.
arXiv Detail & Related papers (2021-02-12T13:45:23Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.