Taxonomic Reasoning for Rare Arthropods: Combining Dense Image Captioning and RAG for Interpretable Classification
- URL: http://arxiv.org/abs/2503.10886v1
- Date: Thu, 13 Mar 2025 21:18:10 GMT
- Title: Taxonomic Reasoning for Rare Arthropods: Combining Dense Image Captioning and RAG for Interpretable Classification
- Authors: Nathaniel Lesperance, Sujeevan Ratnasingham, Graham W. Taylor,
- Abstract summary: We integrate image captioning and retrieval-augmented generation (RAG) with large language models (LLMs) to enhance biodiversity monitoring.<n>Our findings highlight the potential for modern vision-language AI pipelines to support biodiversity conservation initiatives.
- Score: 12.923336716880506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of pressing climate change challenges and the significant biodiversity loss among arthropods, automated taxonomic classification from organismal images is a subject of intense research. However, traditional AI pipelines based on deep neural visual architectures such as CNNs or ViTs face limitations such as degraded performance on the long-tail of classes and the inability to reason about their predictions. We integrate image captioning and retrieval-augmented generation (RAG) with large language models (LLMs) to enhance biodiversity monitoring, showing particular promise for characterizing rare and unknown arthropod species. While a naive Vision-Language Model (VLM) excels in classifying images of common species, the RAG model enables classification of rarer taxa by matching explicit textual descriptions of taxonomic features to contextual biodiversity text data from external sources. The RAG model shows promise in reducing overconfidence and enhancing accuracy relative to naive LLMs, suggesting its viability in capturing the nuances of taxonomic hierarchy, particularly at the challenging family and genus levels. Our findings highlight the potential for modern vision-language AI pipelines to support biodiversity conservation initiatives, emphasizing the role of comprehensive data curation and collaboration with citizen science platforms to improve species identification, unknown species characterization and ultimately inform conservation strategies.
Related papers
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - G2PDiffusion: Cross-Species Genotype-to-Phenotype Prediction via Evolutionary Diffusion [108.94237816552024]
We propose the first genotype-to-phenotype diffusion model (G2PDiffusion) that generates morphological images from DNA.<n>The model contains three novel components: 1) a MSA retrieval engine that identifies conserved and co-evolutionary patterns; 2) an environment-aware MSA conditional encoder that effectively models complex genotype-environment interactions; and 3) an adaptive phenomic alignment module to improve genotype-phenotype consistency.
arXiv Detail & Related papers (2025-02-07T06:16:31Z) - Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data [0.06819010383838325]
Camera traps offer enormous new opportunities in ecological studies.
Current automated image analysis methods often lack contextual richness needed to support impactful conservation outcomes.
Here we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps.
arXiv Detail & Related papers (2024-11-21T15:28:52Z) - Adaptive High-Frequency Transformer for Diverse Wildlife Re-Identification [33.0352672906987]
Wildlife ReID involves utilizing visual technology to identify specific individuals of wild animals in different scenarios.
We present a unified, multi-species general framework for wildlife ReID.
arXiv Detail & Related papers (2024-10-09T15:16:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - TEPI: Taxonomy-aware Embedding and Pseudo-Imaging for Scarcely-labeled
Zero-shot Genome Classification [0.0]
A species' genetic code or genome encodes valuable evolutionary, biological, and phylogenetic information.
Traditional bioinformatics tools have made notable progress but lack scalability and are computationally expensive.
We propose addressing this problem through zero-shot learning using TEPI, taxonomy-aware Embedding and Pseudo-Imaging.
arXiv Detail & Related papers (2024-01-24T04:16:28Z) - Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs [31.22129440376567]
We exploit the structured context linked to camera trap images to boost out-of-distribution generalization for species classification tasks in camera traps.
A picture of a wild animal could be linked to details about the time and place it was captured, as well as structured biological knowledge about the animal species.
We propose a novel framework that transforms species classification as link prediction in a multimodal knowledge graph.
arXiv Detail & Related papers (2023-12-31T23:32:03Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
We show that ensembles of Data-efficient image Transformers (DeiTs) significantly outperform the previous state of the art (SOTA)
On all the data sets we test, we achieve a new SOTA, with a reduction of the error with respect to the previous SOTA ranging from 18.48% to 87.50%.
arXiv Detail & Related papers (2022-03-03T14:16:22Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.