Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
- URL: http://arxiv.org/abs/2411.14219v1
- Date: Thu, 21 Nov 2024 15:28:52 GMT
- Title: Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
- Authors: Paul Fergus, Carl Chalmers, Naomi Matthews, Stuart Nixon, Andre Burger, Oliver Hartley, Chris Sutherland, Xavier Lambin, Steven Longmore, Serge Wich,
- Abstract summary: Camera traps offer enormous new opportunities in ecological studies.
Current automated image analysis methods often lack contextual richness needed to support impactful conservation outcomes.
Here we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps.
- Score: 0.06819010383838325
- License:
- Abstract: Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Here we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps. We introduce a two-stage system: YOLOv10-X to localise and classify species (mammals and birds) within images, and a Phi-3.5-vision-instruct model to read YOLOv10-X binding box labels to identify species, overcoming its limitation with hard to classify objects in images. Additionally, Phi-3.5 detects broader variables, such as vegetation type, and time of day, providing rich ecological and environmental context to YOLO's species detection output. When combined, this output is processed by the model's natural language system to answer complex queries, and retrieval-augmented generation (RAG) is employed to enrich responses with external information, like species weight and IUCN status (information that cannot be obtained through direct visual analysis). This information is used to automatically generate structured reports, providing biodiversity stakeholders with deeper insights into, for example, species abundance, distribution, animal behaviour, and habitat selection. Our approach delivers contextually rich narratives that aid in wildlife management decisions. By providing contextually rich insights, our approach not only reduces manual effort but also supports timely decision-making in conservation, potentially shifting efforts from reactive to proactive management.
Related papers
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia.
Our framework maps locations, species, and text descriptions into a common space, enabling zero-shot range estimation from textual descriptions.
Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data.
arXiv Detail & Related papers (2024-10-14T17:22:55Z) - Harnessing Artificial Intelligence for Wildlife Conservation [0.0937465283958018]
Conservation AI detects and classifies animals, humans, and poaching-related objects using visual spectrum and thermal infrared cameras.
The platform processes this data with convolutional neural networks (CNNs) and Transformer architectures to monitor species.
Case studies from Europe, North America, Africa, and Southeast Asia highlight the platform's success in species identification, biodiversity monitoring, and poaching prevention.
arXiv Detail & Related papers (2024-08-30T09:13:31Z) - Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs [31.22129440376567]
We exploit the structured context linked to camera trap images to boost out-of-distribution generalization for species classification tasks in camera traps.
A picture of a wild animal could be linked to details about the time and place it was captured, as well as structured biological knowledge about the animal species.
We propose a novel framework that transforms species classification as link prediction in a multimodal knowledge graph.
arXiv Detail & Related papers (2023-12-31T23:32:03Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
We show that ensembles of Data-efficient image Transformers (DeiTs) significantly outperform the previous state of the art (SOTA)
On all the data sets we test, we achieve a new SOTA, with a reduction of the error with respect to the previous SOTA ranging from 18.48% to 87.50%.
arXiv Detail & Related papers (2022-03-03T14:16:22Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
We argue that a compact and general learning objective is to minimize the entropy of the agent's state visitation estimated using a latent state-space model.
This objective induces an agent to both gather information about its environment, corresponding to reducing uncertainty, and to gain control over its environment, corresponding to reducing the unpredictability of future world states.
arXiv Detail & Related papers (2021-12-07T18:50:42Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
We present an initial deep convolutional neural network model, trained on 2.9M images across 465 fine-grained species.
The long-term goal is to enable scientists to make conservation recommendations from near real-time analysis of species abundance and population health.
arXiv Detail & Related papers (2020-09-24T01:04:18Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
We develop a framework for automatic detection and recognition of individuals in different patterned species.
We use the recently proposed Faster-RCNN object detection framework to efficiently detect animals in images.
We evaluate our recognition system on zebra and jaguar images to show generalization to other patterned species.
arXiv Detail & Related papers (2020-05-06T15:29:21Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.