Statistical Impossibility and Possibility of Aligning LLMs with Human Preferences: From Condorcet Paradox to Nash Equilibrium
- URL: http://arxiv.org/abs/2503.10990v1
- Date: Fri, 14 Mar 2025 01:29:21 GMT
- Title: Statistical Impossibility and Possibility of Aligning LLMs with Human Preferences: From Condorcet Paradox to Nash Equilibrium
- Authors: Kaizhao Liu, Qi Long, Zhekun Shi, Weijie J. Su, Jiancong Xiao,
- Abstract summary: We show that Condorcet cycles exist with probability converging to one exponentially fast under a probabilistic preference model.<n>We identify a necessary and sufficient condition for mixed strategies: the absence of a response that is preferred over all others by a majority.<n>We leverage insights from our statistical results to design a novel, computationally efficient algorithm for finding Nash equilibria in aligning LLMs with NLHF.
- Score: 23.0436612817548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning large language models (LLMs) with diverse human preferences is critical for ensuring fairness and informed outcomes when deploying these models for decision-making. In this paper, we seek to uncover fundamental statistical limits concerning aligning LLMs with human preferences, with a focus on the probabilistic representation of human preferences and the preservation of diverse preferences in aligned LLMs. We first show that human preferences can be represented by a reward model if and only if the preference among LLM-generated responses is free of any Condorcet cycle. Moreover, we prove that Condorcet cycles exist with probability converging to one exponentially fast under a probabilistic preference model, thereby demonstrating the impossibility of fully aligning human preferences using reward-based approaches such as reinforcement learning from human feedback. Next, we explore the conditions under which LLMs would employ mixed strategies -- meaning they do not collapse to a single response -- when aligned in the limit using a non-reward-based approach, such as Nash learning from human feedback (NLHF). We identify a necessary and sufficient condition for mixed strategies: the absence of a response that is preferred over all others by a majority. As a blessing, we prove that this condition holds with high probability under the probabilistic preference model, thereby highlighting the statistical possibility of preserving minority preferences without explicit regularization in aligning LLMs. Finally, we leverage insights from our statistical results to design a novel, computationally efficient algorithm for finding Nash equilibria in aligning LLMs with NLHF. Our experiments show that Llama-3.2-1B, aligned with our algorithm, achieves a win rate of 60.55\% against the base model.
Related papers
- Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning [55.65738319966385]
We propose a novel online algorithm, iterative Nash policy optimization (INPO)
Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses.
With an LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard.
arXiv Detail & Related papers (2024-06-30T08:00:34Z) - Deep Bayesian Active Learning for Preference Modeling in Large Language Models [84.817400962262]
We propose the Bayesian Active Learner for Preference Modeling (BAL-PM) for Preference Modeling.
BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
Our experiments demonstrate that BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
arXiv Detail & Related papers (2024-06-14T13:32:43Z) - On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization [33.331389392270665]
preference matching (PM) RLHF is a novel approach that aligns large language models with the preference distribution of the reward model under the Bradley--Terry--Luce/Plackett--Luce model.
Central to our approach is a PM regularizer that takes the form of the negative logarithm of the LLM's policy probability distribution over responses.
For practical implementation, we introduce a conditional variant of PM RLHF that is tailored to natural language generation.
arXiv Detail & Related papers (2024-05-26T07:00:05Z) - RLHF from Heterogeneous Feedback via Personalization and Preference Aggregation [24.374185140811115]
Reinforcement learning from human feedback (RLHF) has been an effective technique for aligning AI systems with human values.
In this paper, we focus on addressing the issues due to the inherent heterogeneity in human preferences, as well as their potential strategic behavior in providing feedback.
We propose two frameworks to address heterogeneous human feedback in principled ways: personalization-based one and aggregation-based one.
arXiv Detail & Related papers (2024-04-30T23:57:23Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - Aligning Crowd Feedback via Distributional Preference Reward Modeling [28.754532173765686]
We propose the Distributional Preference Reward Model (DPRM) to align large language models with diverse human preferences.
Our experiments show that DPRM significantly enhances the alignment of LLMs with population preference, yielding more accurate, unbiased, and contextually appropriate responses.
arXiv Detail & Related papers (2024-02-15T07:29:43Z) - MaxMin-RLHF: Alignment with Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.<n>We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.<n>Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Nash Learning from Human Feedback [86.09617990412941]
We introduce an alternative pipeline for the fine-tuning of large language models using pairwise human feedback.
We term this approach Nash learning from human feedback (NLHF)
We present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent.
arXiv Detail & Related papers (2023-12-01T19:26:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.