Rethinking Rotation-Invariant Recognition of Fine-grained Shapes from the Perspective of Contour Points
- URL: http://arxiv.org/abs/2503.10992v1
- Date: Fri, 14 Mar 2025 01:34:20 GMT
- Title: Rethinking Rotation-Invariant Recognition of Fine-grained Shapes from the Perspective of Contour Points
- Authors: Yanjie Xu, Handing Xu, Tianmu Wang, Yaguan Li, Yunzhi Chen, Zhenguo Nie,
- Abstract summary: We propose an anti-noise rotation-invariant convolution module based on contour geometric aware for fine-grained shape recognition.<n>The results show that our method exhibits excellent performance in rotation-invariant recognition of fine-grained shapes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rotation-invariant recognition of shapes is a common challenge in computer vision. Recent approaches have significantly improved the accuracy of rotation-invariant recognition by encoding the rotational invariance of shapes as hand-crafted image features and introducing deep neural networks. However, the methods based on pixels have too much redundant information, and the critical geometric information is prone to early leakage, resulting in weak rotation-invariant recognition of fine-grained shapes. In this paper, we reconsider the shape recognition problem from the perspective of contour points rather than pixels. We propose an anti-noise rotation-invariant convolution module based on contour geometric aware for fine-grained shape recognition. The module divides the shape contour into multiple local geometric regions(LGA), where we implement finer-grained rotation-invariant coding in terms of point topological relations. We provide a deep network composed of five such cascaded modules for classification and retrieval experiments. The results show that our method exhibits excellent performance in rotation-invariant recognition of fine-grained shapes. In addition, we demonstrate that our method is robust to contour noise and the rotation centers. The source code is available at https://github.com/zhenguonie/ANRICN_CGA.
Related papers
- ShapeEmbed: a self-supervised learning framework for 2D contour quantification [45.39160205677261]
We introduce ShapeEmbed, a self-supervised representation learning framework designed to encode the contour of objects in 2D images.<n>Our approach overcomes the limitations of traditional shape descriptors while improving upon existing state-of-the-art autoencoder-based approaches.<n>We demonstrate that the descriptors learned by our framework outperform their competitors in shape classification tasks on natural and biological images.
arXiv Detail & Related papers (2025-07-01T17:55:57Z) - ESCAPE: Equivariant Shape Completion via Anchor Point Encoding [79.59829525431238]
We introduce ESCAPE, a framework designed to achieve rotation-equivariant shape completion.<n>ESCAPE employs a distinctive encoding strategy by selecting anchor points from a shape and representing all points as a distance to all anchor points.<n>ESCAPE achieves robust, high-quality reconstructions across arbitrary rotations and translations.
arXiv Detail & Related papers (2024-12-01T20:05:14Z) - PaRot: Patch-Wise Rotation-Invariant Network via Feature Disentanglement
and Pose Restoration [16.75367717130046]
State-of-the-art models are not robust to rotations, which remains an unknown prior to real applications.
We introduce a novel Patch-wise Rotation-invariant network (PaRot)
Our disentanglement module extracts high-quality rotation-robust features and the proposed lightweight model achieves competitive results.
arXiv Detail & Related papers (2023-02-06T02:13:51Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
We propose a new learning model, i.e., Rectangling Rectification Network (RecRecNet)
Our model can flexibly warp the source structure to the target domain and achieves an end-to-end unsupervised deformation.
Experiments show the superiority of our solution over the compared methods on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2023-01-04T15:12:57Z) - Rethinking Rotation Invariance with Point Cloud Registration [18.829454172955202]
We propose an effective framework for rotation invariance learning via three sequential stages, namely rotation-invariant shape encoding, aligned feature integration, and deep feature registration.
Experimental results on 3D shape classification, part segmentation, and retrieval tasks prove the feasibility of our work.
arXiv Detail & Related papers (2022-12-31T08:17:09Z) - Shape-Pose Disentanglement using SE(3)-equivariant Vector Neurons [59.83721247071963]
We introduce an unsupervised technique for encoding point clouds into a canonical shape representation, by disentangling shape and pose.
Our encoder is stable and consistent, meaning that the shape encoding is purely pose-invariant.
The extracted rotation and translation are able to semantically align different input shapes of the same class to a common canonical pose.
arXiv Detail & Related papers (2022-04-03T21:00:44Z) - Augmenting Implicit Neural Shape Representations with Explicit
Deformation Fields [95.39603371087921]
Implicit neural representation is a recent approach to learn shape collections as zero level-sets of neural networks.
We advocate deformation-aware regularization for implicit neural representations, aiming at producing plausible deformations as latent code changes.
arXiv Detail & Related papers (2021-08-19T22:07:08Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Rotation-Invariant Local-to-Global Representation Learning for 3D Point
Cloud [42.86112554931754]
We propose a local-to-global representation learning algorithm for 3D point cloud data.
Our model takes advantage of multi-level abstraction based on graph convolutional neural networks.
The proposed algorithm presents the state-of-the-art performance on the rotation-augmented 3D object recognition and segmentation benchmarks.
arXiv Detail & Related papers (2020-10-07T10:30:20Z) - ProAlignNet : Unsupervised Learning for Progressively Aligning Noisy
Contours [12.791313859673187]
"ProAlignNet" accounts for large scale misalignments and complex transformations between the contour shapes.
It learns by training with a novel loss function which is derived an upperbound of a proximity-sensitive and local shape-dependent similarity metric.
In two real-world applications, the proposed models consistently perform superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-05-23T14:56:14Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.