Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies
- URL: http://arxiv.org/abs/2503.11031v2
- Date: Thu, 20 Mar 2025 15:44:45 GMT
- Title: Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies
- Authors: Anirban Chandra, Marius Koch, Suraj Pawar, Aniruddha Panda, Kamyar Azizzadenesheli, Jeroen Snippe, Faruk O. Alpak, Farah Hariri, Clement Etienam, Pandu Devarakota, Anima Anandkumar, Detlef Hohl,
- Abstract summary: We develop a Neural Operator (FNO) based model for real-time, high-resolution simulation of $CO$ plume migration.<n>The model is trained on a comprehensive dataset generated from realistic subsurface parameters.<n>We present various strategies for improving the reliability of predictions from the model, which is crucial while assessing actual geological sites.
- Score: 57.23978190717341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study aims to develop surrogate models for accelerating decision making processes associated with carbon capture and storage (CCS) technologies. Selection of sub-surface $CO_2$ storage sites often necessitates expensive and involved simulations of $CO_2$ flow fields. Here, we develop a Fourier Neural Operator (FNO) based model for real-time, high-resolution simulation of $CO_2$ plume migration. The model is trained on a comprehensive dataset generated from realistic subsurface parameters and offers $O(10^5)$ computational acceleration with minimal sacrifice in prediction accuracy. We also explore super-resolution experiments to improve the computational cost of training the FNO based models. Additionally, we present various strategies for improving the reliability of predictions from the model, which is crucial while assessing actual geological sites. This novel framework, based on NVIDIA's Modulus library, will allow rapid screening of sites for CCS. The discussed workflows and strategies can be applied to other energy solutions like geothermal reservoir modeling and hydrogen storage. Our work scales scientific machine learning models to realistic 3D systems that are more consistent with real-life subsurface aquifers/reservoirs, paving the way for next-generation digital twins for subsurface CCS applications.
Related papers
- CirT: Global Subseasonal-to-Seasonal Forecasting with Geometry-inspired Transformer [47.65152457550307]
We propose the geometric-inspired Circular Transformer (CirT) to model the cyclic characteristic of the graticule.
Experiments on the Earth Reanalysis 5 (ERA5) reanalysis dataset demonstrate our model yields a significant improvement over the advanced data-driven models.
arXiv Detail & Related papers (2025-02-27T04:26:23Z) - Atmospheric Transport Modeling of CO$_2$ with Neural Networks [46.26819563674888]
Accurately describing the distribution of CO$$ in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems.
Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere.
In this study we explore four different deep neural networks which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling.
arXiv Detail & Related papers (2024-08-20T17:33:20Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration.
$textttCOPlanner$ is a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem.
arXiv Detail & Related papers (2023-10-11T06:10:07Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - A Deep Learning-Accelerated Data Assimilation and Forecasting Workflow
for Commercial-Scale Geologic Carbon Storage [2.464972164779053]
We propose to leverage physical understandings of porous medium flow behavior with deep learning techniques to develop a fast history matching-reservoir response forecasting workflow.
We developed surrogate models to predict dynamic pressure and CO2 plume extents under multi-well injection.
The workflow can complete history matching and reservoir forecasting with uncertainty quantification in less than one hour on a mainstream personal workstation.
arXiv Detail & Related papers (2021-05-09T16:38:29Z) - Deep-learning-based coupled flow-geomechanics surrogate model for CO$_2$
sequestration [4.635171370680939]
The 3D recurrent R-U-Net model combines deep convolutional and recurrent neural networks to capture the spatial distribution and temporal evolution of saturation, pressure and surface displacement fields.
The surrogate model is trained to predict the 3D CO2 saturation and pressure fields in the storage aquifer, and 2D displacement maps at the Earth's surface.
arXiv Detail & Related papers (2021-05-04T07:34:15Z) - CCSNet: a deep learning modeling suite for CO$_2$ storage [0.0]
CCSNet consists of a sequence of deep learning models producing all the outputs that a numerical simulator typically provides.
Results are 10$3$ to 10$4$ times faster than conventional numerical simulators.
arXiv Detail & Related papers (2021-04-05T06:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.