論文の概要: A Novel Decomposed Feature-Oriented Framework for Open-Set Semantic Segmentation on LiDAR Data
- arxiv url: http://arxiv.org/abs/2503.11097v1
- Date: Fri, 14 Mar 2025 05:40:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:07:24.021200
- Title: A Novel Decomposed Feature-Oriented Framework for Open-Set Semantic Segmentation on LiDAR Data
- Title(参考訳): LiDARデータを用いたオープンセットセマンティックセマンティックセマンティックセグメンテーションのための非分解型特徴指向フレームワーク
- Authors: Wenbang Deng, Xieyuanli Chen, Qinghua Yu, Yunze He, Junhao Xiao, Huimin Lu,
- Abstract要約: 本稿では,LiDARデータのオープンセットセマンティックセマンティックセグメンテーションのための特徴指向フレームワークを提案する。
閉集合セマンティックセマンティックセグメンテーションを同時に実行し、未知のオブジェクトに特有の特徴を生成するために、デュアルデコーダネットワークを設計する。
近接したセマンティックセグメンテーションと異常検出の結果を統合することで、効率的な特徴駆動型LiDARオープンセットセマンティックセグメンテーションを実現する。
- 参考スコア(独自算出の注目度): 6.427051055902494
- License:
- Abstract: Semantic segmentation is a key technique that enables mobile robots to understand and navigate surrounding environments autonomously. However, most existing works focus on segmenting known objects, overlooking the identification of unknown classes, which is common in real-world applications. In this paper, we propose a feature-oriented framework for open-set semantic segmentation on LiDAR data, capable of identifying unknown objects while retaining the ability to classify known ones. We design a decomposed dual-decoder network to simultaneously perform closed-set semantic segmentation and generate distinctive features for unknown objects. The network is trained with multi-objective loss functions to capture the characteristics of known and unknown objects. Using the extracted features, we introduce an anomaly detection mechanism to identify unknown objects. By integrating the results of close-set semantic segmentation and anomaly detection, we achieve effective feature-driven LiDAR open-set semantic segmentation. Evaluations on both SemanticKITTI and nuScenes datasets demonstrate that our proposed framework significantly outperforms state-of-the-art methods. The source code will be made publicly available at https://github.com/nubot-nudt/DOSS.
- Abstract(参考訳): セマンティックセグメンテーションは、移動ロボットが周囲の環境を自律的に理解し、ナビゲートするための重要なテクニックである。
しかし、既存のほとんどの研究は既知のオブジェクトのセグメンテーションに重点を置いており、実世界のアプリケーションでよく見られる未知のクラスを識別している。
本稿では,LiDARデータのオープンセットセマンティックセマンティックセマンティクスのための特徴指向フレームワークを提案する。
分割されたデュアルデコーダネットワークを設計し、クローズドセットのセマンティックセマンティックセグメンテーションを同時に実行し、未知のオブジェクトに特有の特徴を生成する。
このネットワークは、未知や未知の物体の特徴を捉えるために、多目的損失関数を用いて訓練されている。
抽出した特徴を用いて未知の物体を識別する異常検出機構を導入する。
近接したセマンティックセグメンテーションと異常検出の結果を統合することで、効率的な特徴駆動型LiDARオープンセットセマンティックセグメンテーションを実現する。
SemanticKITTI と nuScenes のデータセットによる評価は,提案手法が最先端の手法を大幅に上回っていることを示す。
ソースコードはhttps://github.com/nubot-nudt/DOSS.comで公開されている。
関連論文リスト
- Learning Spatial-Semantic Features for Robust Video Object Segmentation [108.045326229865]
空間意味的特徴と識別的オブジェクトクエリを備えたロバストなビデオオブジェクトセグメンテーションフレームワークを提案する。
提案手法は,複数のデータセットに対して新しい最先端性能を設定できることを示す。
論文 参考訳(メタデータ) (2024-07-10T15:36:00Z) - Semantics Meets Temporal Correspondence: Self-supervised Object-centric Learning in Videos [63.94040814459116]
自己教師付き手法は、高レベルの意味論と低レベルの時間対応の学習において顕著な進歩を見せている。
融合した意味特徴と対応地図の上に,意味認識型マスキングスロットアテンションを提案する。
我々は、時間的コヒーレントなオブジェクト中心表現を促進するために、セマンティックおよびインスタンスレベルの時間的一貫性を自己スーパービジョンとして採用する。
論文 参考訳(メタデータ) (2023-08-19T09:12:13Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - ElC-OIS: Ellipsoidal Clustering for Open-World Instance Segmentation on
LiDAR Data [13.978966783993146]
オープンワールドインスタンス(OIS)は、現在の観察に現れるすべてのオブジェクトインスタンスを正確に分割することを目的とした、難しいタスクである。
これは、堅牢な自律ナビゲーションのような安全クリティカルなアプリケーションにとって重要である。
我々は、LiDARポイントクラウドのための柔軟で効果的なOISフレームワークを提案し、既知のインスタンスと未知のインスタンスの両方を正確に分割できる。
論文 参考訳(メタデータ) (2023-03-08T03:22:11Z) - Open-Set Object Detection Using Classification-free Object Proposal and
Instance-level Contrastive Learning [25.935629339091697]
オープンセットオブジェクト検出(OSOD)は、オブジェクトと背景分離、オープンセットオブジェクト分類という2つのサブタスクからなる問題を処理するための有望な方向である。
我々は,OSODの課題に対処するため,Openset RCNNを提案する。
我々のOpenset RCNNは、散らばった環境下でロボットの並べ替えタスクをサポートするオープンセットの知覚能力でロボットを支援できることを示します。
論文 参考訳(メタデータ) (2022-11-21T15:00:04Z) - Open-world Semantic Segmentation for LIDAR Point Clouds [18.45831801175225]
LIDAR点雲に対するオープンワールドセマンティックセマンティックセマンティクスタスクを提案する。
オープンセットセマンティックセグメンテーションを使って、古いクラスと新しいクラスの両方を識別することを目的としている。
また、漸進的な学習を用いて、新しいオブジェクトを既存の知識ベースに徐々に組み込む。
論文 参考訳(メタデータ) (2022-07-04T14:40:35Z) - SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation [111.61261419566908]
ディープニューラルネットワーク(DNN)は通常、閉集合のセマンティッククラスで訓練される。
未発見のオブジェクトを扱うには不備だ。
このような物体の検出と局在化は、自動運転の認識などの安全クリティカルなアプリケーションに不可欠です。
論文 参考訳(メタデータ) (2021-04-30T07:58:19Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
本稿では,教師なしビデオマルチオブジェクトセグメンテーションの課題について述べる。
より正確で効率的な時間区分のための新しいアプローチを紹介します。
DAVIS$_17$とYouTube-VISに対する提案手法を評価した結果,セグメント化精度と推論速度の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-10T14:39:44Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
そこで本研究では,視覚領域における視覚的特徴と視覚的対象の両方を学習するために,視覚的特徴を合成することを提案する。
クラスセマンティックスを用いた新しい生成モデルを用いて特徴を生成するだけでなく,特徴を識別的に分離する。
論文 参考訳(メタデータ) (2020-10-19T12:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。