論文の概要: Quantifying Interpretability in CLIP Models with Concept Consistency
- arxiv url: http://arxiv.org/abs/2503.11103v1
- Date: Fri, 14 Mar 2025 05:47:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:09:03.460427
- Title: Quantifying Interpretability in CLIP Models with Concept Consistency
- Title(参考訳): 概念整合性を考慮したCLIPモデルの解釈可能性の定量化
- Authors: Avinash Madasu, Vasudev Lal, Phillip Howard,
- Abstract要約: CLIPのようなモデルにおける注意頭のためのテキスト記述の概念的一貫性について検討する。
本稿では,新しい解釈可能性尺度である概念一貫性スコア(CCS)を提案する。
我々は,高いCCSヘッドが重要な概念を捕捉し,ドメイン外検出,概念固有の推論,ビデオ言語理解において重要な役割を担っていることを発見した。
- 参考スコア(独自算出の注目度): 5.921976812527759
- License:
- Abstract: CLIP is one of the most popular foundational models and is heavily used for many vision-language tasks. However, little is known about the inner workings of CLIP. While recent work has proposed decomposition-based interpretability methods for identifying textual descriptions of attention heads in CLIP, the implications of conceptual consistency in these text labels on interpretability and model performance has not been explored. To bridge this gap, we study the conceptual consistency of text descriptions for attention heads in CLIP-like models. We conduct extensive experiments on six different models from OpenAI and OpenCLIP which vary by size, type of pre-training data and patch size. We propose Concept Consistency Score (CCS), a novel interpretability metric that measures how consistently individual attention heads in CLIP models align with specific concepts. To assign concept labels to heads, we use in-context learning with ChatGPT, guided by a few manually-curated examples, and validate these labels using an LLM-as-a-judge approach. Our soft-pruning experiments reveal that high CCS heads are critical for preserving model performance, as pruning them leads to a significantly larger performance drop than pruning random or low CCS heads. Notably, we find that high CCS heads capture essential concepts and play a key role in out-of-domain detection, concept-specific reasoning, and video-language understanding. These results position CCS as a powerful interpretability metric for analyzing CLIP-like models.
- Abstract(参考訳): CLIPは最も一般的な基礎モデルの1つで、多くの視覚言語タスクによく使われている。
しかし、CLIPの内部構造についてはほとんど分かっていない。
最近の研究は、CLIPにおける注意点のテキスト記述を特定するための分解に基づく解釈可能性法を提案しているが、これらのテキストラベルにおける概念整合性が解釈可能性やモデル性能に与える影響は検討されていない。
このギャップを埋めるために、CLIPのようなモデルにおける注意頭のためのテキスト記述の概念的一貫性について検討する。
我々は,OpenAIとOpenCLIPの6つの異なるモデルについて,サイズ,事前学習データの種類,パッチサイズによって広範な実験を行った。
概念整合性スコア(Concept Consistency Score, CCS)は、CLIPモデルにおける個々の注意点が特定の概念とどのように一致しているかを測定する新しい解釈可能性尺度である。
概念ラベルを頭部に割り当てるために、ChatGPTを用いてテキスト内学習を行い、いくつかの手作業による例でガイドし、LLM-as-a-judgeアプローチを用いてそれらのラベルを検証する。
ソフトプルーニング実験により,高いCCSヘッドがモデル性能の維持に重要であることが明らかとなった。
特に、高いCCSヘッドは重要な概念を捉え、ドメイン外検出、概念固有の推論、ビデオ言語理解において重要な役割を担っている。
これらの結果は、CLIPのようなモデルを分析するための強力な解釈可能性指標としてCCSを位置づけている。
関連論文リスト
- Toward a Holistic Evaluation of Robustness in CLIP Models [11.148206692373144]
対照的な言語-画像事前学習(CLIP)モデルは、ゼロショット分類において有意な可能性を示している。
この作業は、いくつかの新しい視点を導入することで、より包括的なCLIPの評価を提供することを目的としている。
それぞれの側面において、モデルアーキテクチャ、トレーニング配布、トレーニングセットサイズ、微調整、コントラスト損失、テストタイムプロンプトの6つの要因がCLIPモデルに与える影響を検討する。
論文 参考訳(メタデータ) (2024-10-02T13:26:17Z) - Quantifying and Enabling the Interpretability of CLIP-like Models [19.459369149558405]
本稿では,OpenAIとOpenCLIPの6種類のCLIPモデルについて検討する。
我々のアプローチは、TEXTSPANアルゴリズムとコンテキスト内学習を用いて、個々の注意を特定の特性に分解することから始まります。
以上の結果から,より大型のCLIPモデルはより小型のCLIPモデルよりも一般的に解釈可能であることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-10T15:19:40Z) - Concept Visualization: Explaining the CLIP Multi-modal Embedding Using WordNet [4.597864989500202]
埋め込みのマルチモーダルな性質を利用して画像のCLIP埋め込みを説明する新しいサリエンシ手法を提案する。
ConVisはWordNetからの語彙情報を利用して、終末モデルがトレーニングした概念に限らず、あらゆる概念に対してタスク非依存のSaliency Mapsを計算している。
論文 参考訳(メタデータ) (2024-05-23T13:41:17Z) - Enhancing Few-shot CLIP with Semantic-Aware Fine-Tuning [61.902254546858465]
Contrastive Language-Image Pre-Trainingに基づく手法は、数発の適応タスクで有望な性能を示した。
本稿では,タスク固有のセマンティクスに焦点を合わせるために,トレーニングプロセス中にアテンションプーリング層のパラメータを微調整することを提案する。
論文 参考訳(メタデータ) (2023-11-08T05:18:57Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
大規模事前訓練型視覚言語モデル(VLM)はゼロショット分類に有効であることが証明されている。
本稿では,アノテーションではなく,より広い語彙を前提とした,より難易度の高いゼロショット分類(Realistic Zero-Shot Classification)を提案する。
本稿では,ラベルのないデータから構造意味情報を抽出し,同時に自己学習を行う自己構造意味アライメント(S3A)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-24T17:56:46Z) - CAILA: Concept-Aware Intra-Layer Adapters for Compositional Zero-Shot
Learning [14.496173899477283]
本研究では,既存の概念と新しい属性オブジェクトの組み合わせを認識することを目的とした,合成ゼロショット学習(CZSL)の課題について検討する。
本稿では,CLIPエンコーダ層に,大規模言語モデル間で有効であることが証明されたパラメータ効率向上手法であるアダプタを挿入することを提案する。
さらに,概念意識を付加し,概念固有の「対象」,「属性」,「構成」の特徴を抽出できるようにした。
論文 参考訳(メタデータ) (2023-05-26T07:02:57Z) - Global Knowledge Calibration for Fast Open-Vocabulary Segmentation [124.74256749281625]
本稿では,各学習カテゴリの同義語群を生成するテキスト多様化戦略を提案する。
また,CLIPの汎用的な知識を維持するために,テキスト誘導型知識蒸留法を用いている。
提案手法は, 各種データセットに対して頑健な一般化性能を実現する。
論文 参考訳(メタデータ) (2023-03-16T09:51:41Z) - OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal
Regression [94.28253749970534]
我々は、リッチなセマンティックCLIP潜在空間からランクの概念を学ぶことを提案する。
OrdinalCLIPは学習可能なコンテキストトークンと学習可能なランク埋め込みで構成されている。
実験結果から,本パラダイムは一般順序回帰タスクにおける競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-06-06T03:54:53Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
本稿では,学習可能性を評価するためにCluster Learnability (CL)を導入する。
CLは、K-meansで表現をクラスタリングすることによって得られたラベルを予測するために訓練されたKNNのパフォーマンスで測定される。
CLは、他の競合する評価手法よりも分布内モデルの性能と相関することがわかった。
論文 参考訳(メタデータ) (2022-06-02T19:05:13Z) - DenseCLIP: Extract Free Dense Labels from CLIP [130.3830819077699]
対照的に、CLIP(Contrastive Language- Image Pre-Training)は、オープンボキャブラリゼロショット画像認識において画期的な進歩を遂げた。
DenseCLIP+はSOTAトランスダクティブなゼロショットセマンティックセグメンテーション法を大きなマージンで上回る。
我々の発見は、DenseCLIPが高密度予測タスクの信頼性の高い新たな監視源となることを示唆している。
論文 参考訳(メタデータ) (2021-12-02T09:23:01Z) - Evaluating CLIP: Towards Characterization of Broader Capabilities and
Downstream Implications [8.15254368157658]
私たちはCLIPを分析し、そのようなモデルがもたらす課題をいくつか強調します。
CLIPは、従来のコンピュータビジョンシステムに見られるバイアスを継承できる。
これらの結果は、成長する仕事の体に「ベター」モデルの概念を変えることを要求する証拠となる。
論文 参考訳(メタデータ) (2021-08-05T19:05:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。