MoLEx: Mixture of Layer Experts for Finetuning with Sparse Upcycling
- URL: http://arxiv.org/abs/2503.11144v1
- Date: Fri, 14 Mar 2025 07:22:07 GMT
- Title: MoLEx: Mixture of Layer Experts for Finetuning with Sparse Upcycling
- Authors: Rachel S. Y. Teo, Tan M. Nguyen,
- Abstract summary: Large-scale pre-training of deep models, followed by fine-tuning them, has become the cornerstone of natural language processing (NLP)<n>In this paper, we study layers as extractors of different types of linguistic information that are valuable when used in conjunction.<n>We propose the Mixture of Layer Experts (MoLEx), a novel sparse mixture of experts whose experts are layers in the pre-trained model.
- Score: 2.1605931466490795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale pre-training of deep models, followed by fine-tuning them, has become the cornerstone of natural language processing (NLP). The prevalence of data coupled with computational resources has led to large models with a considerable number of parameters. While the massive size of these models has led to remarkable success in many NLP tasks, a detriment is the expense required to retrain all the base model's parameters for the adaptation to each task or domain. Parameter Efficient Fine-Tuning (PEFT) provides an effective solution for this challenge by minimizing the number of parameters required to be fine-tuned while maintaining the quality of the model. While existing methods have achieved impressive results, they mainly focus on adapting a subset of parameters, weight reparameterization, and prompt engineering. In this paper, we study layers as extractors of different types of linguistic information that are valuable when used in conjunction. We then propose the Mixture of Layer Experts (MoLEx), a novel sparse mixture of experts (SMoE) whose experts are layers in the pre-trained model. It performs a conditional computation of a mixture of layers during fine-tuning to provide the model with more structural knowledge about the data. By providing an avenue for information exchange between layers, MoLEx enables the model to make a more well-informed prediction for the downstream task, leading to better fine-tuning results with the same number of effective parameters. As experts can be processed in parallel, MoLEx introduces minimal additional computational overhead. We empirically corroborate the advantages of MoLEx when combined with popular PEFT baseline methods on a variety of downstream fine-tuning tasks, including the popular GLUE benchmark as well as the End-to-End Challenge (E2E). The code is publicly available at https://github.com/rachtsy/molex.
Related papers
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.<n>Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.<n>We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - FineGates: LLMs Finetuning with Compression using Stochastic Gates [7.093692674858257]
Large Language Models (LLMs) present significant challenges for full finetuning due to the high computational demands.<n>Lightweight finetuning techniques have been proposed, like learning low-rank adapter layers.<n>We propose an adaptor model based on gates that simultaneously sparsify the frozen base model with task-specific adaptation.
arXiv Detail & Related papers (2024-12-17T14:33:05Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
tool is a novel MoE designed to enhance both the efficacy and efficiency of sparse MoE models.
tool can enhance model performance while decreasing the computation load at MoE layers by over 50% without sacrificing performance.
arXiv Detail & Related papers (2024-02-27T08:18:02Z) - Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks [5.536630285985836]
We introduce parameter-efficient sparsity crafting (PESC)
PESC crafts dense models into sparse models using the mixture-of-experts (MoE) architecture.
Our best sparse model outperforms other sparse and dense models and exhibits superior general capabilities compared to GP3.5.
arXiv Detail & Related papers (2024-01-05T09:58:09Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.