Deep Joint Distribution Optimal Transport for Universal Domain Adaptation on Time Series
- URL: http://arxiv.org/abs/2503.11217v2
- Date: Fri, 11 Apr 2025 14:32:36 GMT
- Title: Deep Joint Distribution Optimal Transport for Universal Domain Adaptation on Time Series
- Authors: Romain Mussard, Fannia Pacheco, Maxime Berar, Gilles Gasso, Paul Honeine,
- Abstract summary: UniDA aims to transfer knowledge from a labeled source domain to an unlabeled target domain, even when their classes are not fully shared.<n>This paper introduces UniJDOT, an optimal-transport-based method that accounts for the unknown target samples in the transport cost.<n> Experiments on TS benchmarks demonstrate the discriminability, robustness, and state-of-the-art performance of UniJDOT.
- Score: 8.877926274964251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain, even when their classes are not fully shared. Few dedicated UniDA methods exist for Time Series (TS), which remains a challenging case. In general, UniDA approaches align common class samples and detect unknown target samples from emerging classes. Such detection often results from thresholding a discriminability metric. The threshold value is typically either a fine-tuned hyperparameter or a fixed value, which limits the ability of the model to adapt to new data. Furthermore, discriminability metrics exhibit overconfidence for unknown samples, leading to misclassifications. This paper introduces UniJDOT, an optimal-transport-based method that accounts for the unknown target samples in the transport cost. Our method also proposes a joint decision space to improve the discriminability of the detection module. In addition, we use an auto-thresholding algorithm to reduce the dependence on fixed or fine-tuned thresholds. Finally, we rely on a Fourier transform-based layer inspired by the Fourier Neural Operator for better TS representation. Experiments on TS benchmarks demonstrate the discriminability, robustness, and state-of-the-art performance of UniJDOT.
Related papers
- Asymmetric Co-Training for Source-Free Few-Shot Domain Adaptation [5.611768906855499]
We propose an asymmetric co-training (ACT) method specifically designed for the SFFSDA scenario.<n>We use a two-step optimization process to train the target model.<n>Our findings suggest that adapting a source pre-trained model using only a small amount of labeled target data offers a practical and dependable solution.
arXiv Detail & Related papers (2025-02-20T02:58:45Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - Upcycling Models under Domain and Category Shift [95.22147885947732]
We introduce an innovative global and local clustering learning technique (GLC)
We design a novel, adaptive one-vs-all global clustering algorithm to achieve the distinction across different target classes.
Remarkably, in the most challenging open-partial-set DA scenario, GLC outperforms UMAD by 14.8% on the VisDA benchmark.
arXiv Detail & Related papers (2023-03-13T13:44:04Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Unified Optimal Transport Framework for Universal Domain Adaptation [27.860165056943796]
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a source domain to a target domain without any constraints on label sets.
Most existing methods require manually specified or hand-tuned threshold values to detect common samples.
We propose to use Optimal Transport (OT) to handle these issues under a unified framework, namely UniOT.
arXiv Detail & Related papers (2022-10-31T05:07:09Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.