Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption
- URL: http://arxiv.org/abs/2503.11221v2
- Date: Wed, 19 Mar 2025 07:26:14 GMT
- Title: Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption
- Authors: Du Chen, Tianhe Wu, Kede Ma, Lei Zhang,
- Abstract summary: Full-reference image quality assessment (FR-IQA) generally assumes that reference images are of perfect quality.<n>Recent generative enhancement methods are capable of producing images of higher quality than their original.<n>We present a generalized FR-IQA model, namely Adaptive Fidelity-Naturalness Evaluator (A-FINE), to accurately assess and adaptively combine the fidelity and naturalness of a test image.
- Score: 21.811319260270732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Full-reference image quality assessment (FR-IQA) generally assumes that reference images are of perfect quality. However, this assumption is flawed due to the sensor and optical limitations of modern imaging systems. Moreover, recent generative enhancement methods are capable of producing images of higher quality than their original. All of these challenge the effectiveness and applicability of current FR-IQA models. To relax the assumption of perfect reference image quality, we build a large-scale IQA database, namely DiffIQA, containing approximately 180,000 images generated by a diffusion-based image enhancer with adjustable hyper-parameters. Each image is annotated by human subjects as either worse, similar, or better quality compared to its reference. Building on this, we present a generalized FR-IQA model, namely Adaptive Fidelity-Naturalness Evaluator (A-FINE), to accurately assess and adaptively combine the fidelity and naturalness of a test image. A-FINE aligns well with standard FR-IQA when the reference image is much more natural than the test image. We demonstrate by extensive experiments that A-FINE surpasses standard FR-IQA models on well-established IQA datasets and our newly created DiffIQA. To further validate A-FINE, we additionally construct a super-resolution IQA benchmark (SRIQA-Bench), encompassing test images derived from ten state-of-the-art SR methods with reliable human quality annotations. Tests on SRIQA-Bench re-affirm the advantages of A-FINE. The code and dataset are available at https://tianhewu.github.io/A-FINE-page.github.io/.
Related papers
- IQA-Adapter: Exploring Knowledge Transfer from Image Quality Assessment to Diffusion-based Generative Models [0.5356944479760104]
We introduce IQA-Adapter, a novel architecture that conditions generation on target quality levels by learning the relationship between images and quality scores.<n>IQA-Adapter achieves up to a 10% improvement across multiple objective metrics, as confirmed by a subjective study.<n>Our quality-aware methods also provide insights into the adversarial robustness of IQA models.
arXiv Detail & Related papers (2024-12-02T18:40:19Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Cross-IQA: Unsupervised Learning for Image Quality Assessment [3.2287957986061038]
We propose a no-reference image quality assessment (NR-IQA) method termed Cross-IQA based on vision transformer(ViT) model.
The proposed Cross-IQA method can learn image quality features from unlabeled image data.
Experimental results show that Cross-IQA can achieve state-of-the-art performance in assessing the low-frequency degradation information.
arXiv Detail & Related papers (2024-05-07T13:35:51Z) - Reference-Free Image Quality Metric for Degradation and Reconstruction Artifacts [2.5282283486446753]
We develop a reference-free quality evaluation network, dubbed "Quality Factor (QF) Predictor"
Our QF Predictor is a lightweight, fully convolutional network comprising seven layers.
It receives JPEG compressed image patch with a random QF as input, is trained to accurately predict the corresponding QF.
arXiv Detail & Related papers (2024-05-01T22:28:18Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
No-reference image quality assessment (NR-IQA) models can effectively quantify perceived image quality.<n>We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - Less is More: Learning Reference Knowledge Using No-Reference Image
Quality Assessment [58.09173822651016]
We argue that it is possible to learn reference knowledge under the No-Reference Image Quality Assessment setting.
We propose a new framework to learn comparative knowledge from non-aligned reference images.
Experiments on eight standard NR-IQA datasets demonstrate the superior performance to the state-of-the-art NR-IQA methods.
arXiv Detail & Related papers (2023-12-01T13:56:01Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
We consider AR technology as the superimposition of virtual scenes and real scenes, and introduce visual confusion as its basic theory.
A ConFusing Image Quality Assessment (CFIQA) database is established, which includes 600 reference images and 300 distorted images generated by mixing reference images in pairs.
An objective metric termed CFIQA is also proposed to better evaluate the confusing image quality.
arXiv Detail & Related papers (2022-04-11T07:03:06Z) - Content-Variant Reference Image Quality Assessment via Knowledge
Distillation [35.4412922147879]
We propose a content-variant reference method via knowledge distillation (CVRKD-IQA)
Specifically, we use non-aligned reference (NAR) images to introduce various prior distributions of high-quality images.
Our model can outperform all NAR/NR-IQA SOTAs, even reach comparable performance with FR-IQA methods on some occasions.
arXiv Detail & Related papers (2022-02-26T12:04:56Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.