Self-Supervised Pretraining for Fine-Grained Plankton Recognition
- URL: http://arxiv.org/abs/2503.11341v1
- Date: Fri, 14 Mar 2025 12:15:20 GMT
- Title: Self-Supervised Pretraining for Fine-Grained Plankton Recognition
- Authors: Joona Kareinen, Tuomas Eerola, Kaisa Kraft, Lasse Lensu, Sanna Suikkanen, Heikki Kälviäinen,
- Abstract summary: Plankton recognition is an important computer vision problem due to plankton's essential role in ocean food webs and carbon capture.<n>In this work, we study large-scale self-supervised pretraining for fine-grained plankton recognition.
- Score: 0.11309478649967238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plankton recognition is an important computer vision problem due to plankton's essential role in ocean food webs and carbon capture, highlighting the need for species-level monitoring. However, this task is challenging due to its fine-grained nature and dataset shifts caused by different imaging instruments and varying species distributions. As new plankton image datasets are collected at an increasing pace, there is a need for general plankton recognition models that require minimal expert effort for data labeling. In this work, we study large-scale self-supervised pretraining for fine-grained plankton recognition. We first employ masked autoencoding and a large volume of diverse plankton image data to pretrain a general-purpose plankton image encoder. Then we utilize fine-tuning to obtain accurate plankton recognition models for new datasets with a very limited number of labeled training images. Our experiments show that self-supervised pretraining with diverse plankton data clearly increases plankton recognition accuracy compared to standard ImageNet pretraining when the amount of training data is limited. Moreover, the accuracy can be further improved when unlabeled target data is available and utilized during the pretraining.
Related papers
- Open-Set Plankton Recognition [0.10324748405849929]
Modern automatic plankton imaging devices enable the collection of large-scale plankton image datasets.<n>Plankton species recognition can be seen as an image classification task and is typically solved using deep learning-based image recognition models.<n>This paper considers open-set recognition (OSR) of plankton images.
arXiv Detail & Related papers (2025-03-14T11:35:36Z) - MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark [36.37530623015916]
We propose a benchmark dataset, Multiple Phytoplankton Tracking (MPT), which covers diverse background information and variations in motion during observation.<n>The dataset includes 27 species of phytoplankton and zooplankton, 14 different backgrounds to simulate diverse and complex underwater environments, and a total of 140 videos.<n>We introduce an additional feature extractor to predict the residuals of the standard feature extractor's output, and compute multi-scale frame-to-frame similarity based on features from different layers of the extractor.
arXiv Detail & Related papers (2024-10-22T04:57:28Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Efficient Unsupervised Learning for Plankton Images [12.447149371717]
Monitoring plankton populations in situ is fundamental to preserve the aquatic ecosystem.
The adoption of machine learning algorithms to classify such data may be affected by the significant cost of manual annotation.
We propose an efficient unsupervised learning pipeline to provide accurate classification of plankton microorganisms.
arXiv Detail & Related papers (2022-09-14T15:33:16Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Deep Learning Classification of Lake Zooplankton [0.0]
We present a set of deep learning models developed for the identification of lake plankton.
To this aim, we annotated into 35 classes over 17900 images of zooplankton and large phytoplankton colonies.
Our best models were based on transfer learning and ensembling, which classified plankton images with 98% accuracy and 93% F1 score.
arXiv Detail & Related papers (2021-08-11T14:57:43Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
Scene graph models usually require supervised learning on large quantities of labeled data with intensive human annotation.
We propose visual distant supervision, a novel paradigm of visual relation learning, which can train scene graph models without any human-labeled data.
Comprehensive experimental results show that our distantly supervised model outperforms strong weakly supervised and semi-supervised baselines.
arXiv Detail & Related papers (2021-03-29T06:35:24Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.