論文の概要: An experimental approach on Few Shot Class Incremental Learning
- arxiv url: http://arxiv.org/abs/2503.11349v1
- Date: Fri, 14 Mar 2025 12:36:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:46.887619
- Title: An experimental approach on Few Shot Class Incremental Learning
- Title(参考訳): 数ショットクラスのインクリメンタルラーニングに関する実験的検討
- Authors: Marinela Adam,
- Abstract要約: FSCIL(Few-Shot Class-Incremental Learning)は、機械学習の幅広い範囲における最先端のパラダイムである。
本論文では,大規模データセットにまたがる広範な実験を含む,さまざまなソリューションを提案する。
それらの利点を強調し、最も有望なものを改善するために実験的なアプローチを提示します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Few-Shot Class-Incremental Learning (FSCIL) represents a cutting-edge paradigm within the broader scope of machine learning, designed to empower models with the ability to assimilate new classes of data with limited examples while safeguarding existing knowledge. The paper will present different solutions which contain extensive experiments across large-scale datasets, domain shifts, and network architectures to evaluate and compare the selected methods. We highlight their advantages and then present an experimental approach with the purpose of improving the most promising one by replacing the visual-language (V-L) model (CLIP) with another V-L model (CLOOB) that seem to outperform it on zero-shot learning tasks. The aim of this report is to present an experimental method for FSCIL that would improve its performance. We also plan to offer an overview followed by an analysis of the recent advancements in FSCIL domain, focusing on various strategies to mitigate catastrophic forgetting and improve the adaptability of models to evolving tasks and datasets.
- Abstract(参考訳): FSCIL(Few-Shot Class-Incremental Learning)は、機械学習の幅広い範囲における最先端のパラダイムであり、既存の知識を守りながら、限られた例で新しいデータのクラスを同化する能力をモデルに与えるために設計された。
本稿では,大規模データセット,ドメインシフト,ネットワークアーキテクチャにまたがる広範な実験を含む,選択した手法の評価と比較を行う,さまざまなソリューションを提案する。
その利点を強調し,視覚言語(V-L)モデル(CLIP)を,ゼロショット学習タスクにおいてより優れているように見える別のV-Lモデル(CLOOB)に置き換えることにより,最も有望なものを改善する実験的なアプローチを提案する。
本報告の目的は,FSCILの性能向上のための実験手法を提案することである。
また、FSCIL領域の最近の進歩を分析し、破滅的な忘れを軽減し、タスクやデータセットの進化へのモデルの適応性を改善するための様々な戦略について概説する。
関連論文リスト
- A Hybrid Model for Few-Shot Text Classification Using Transfer and Meta-Learning [0.0]
本稿では,移動学習とメタ学習に基づく数ショットのテキスト分類モデルを提案する。
サンプルやメディアサンプルの少ない条件下では、トランスファーラーニングとメタラーニングに基づくモデルは、従来の機械学習やディープラーニングよりも大幅に優れている。
論文 参考訳(メタデータ) (2025-02-13T09:00:32Z) - Injecting New Knowledge into Large Language Models via Supervised Fine-Tuning [13.371405067535814]
本稿では,Large Language Models(LLMs)における知識注入手法としてのスーパーバイザードファインタニング(SFT)の有効性について検討する。
さまざまなデータセット生成戦略 – トークンベースとファクトベースのスケーリング – を比較して,モデルが新たな情報を学ぶためのトレーニングデータを生成します。
その結果、ドメイン外知識に関連するQ&Aタスクのパフォーマンスが大幅に向上した。
論文 参考訳(メタデータ) (2024-03-30T01:56:07Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
我々は,自己教師付きコントラスト学習の伝達可能性を分析する理論的枠組みを開発する。
対照的な学習は、その伝達可能性を制限するような、ドメイン不変の機能を学ぶのに失敗することを示す。
これらの理論的知見に基づき、Augmentation-robust Contrastive Learning (ArCL) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T09:26:20Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。