Exploring Performance-Complexity Trade-Offs in Sound Event Detection
- URL: http://arxiv.org/abs/2503.11373v1
- Date: Fri, 14 Mar 2025 13:18:02 GMT
- Title: Exploring Performance-Complexity Trade-Offs in Sound Event Detection
- Authors: Tobias Morocutti, Florian Schmid, Jonathan Greif, Francesco Foscarin, Gerhard Widmer,
- Abstract summary: We study the problem of developing new low-complexity networks for the sound event detection task.<n>We find that low-complexity convolutional models previously proposed for audio tagging can be effectively adapted for event detection.<n>We show that combined with an optimized training strategy, we can reach event detection performance comparable to state-of-the-art transformers.
- Score: 3.035039100561926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We target the problem of developing new low-complexity networks for the sound event detection task. Our goal is to meticulously analyze the performance-complexity trade-off, aiming to be competitive with the large state-of-the-art models, at a fraction of the computational requirements. We find that low-complexity convolutional models previously proposed for audio tagging can be effectively adapted for event detection (which requires frame-wise prediction) by adjusting convolutional strides, removing the global pooling, and, importantly, adding a sequence model before the (now frame-wise) classification heads. Systematic experiments reveal that the best choice for the sequence model type depends on which complexity metric is most important for the given application. We also investigate the impact of enhanced training strategies such as knowledge distillation. In the end, we show that combined with an optimized training strategy, we can reach event detection performance comparable to state-of-the-art transformers while requiring only around 5% of the parameters. We release all our pre-trained models and the code for reproducing this work to support future research in low-complexity sound event detection at https://github.com/theMoro/EfficientSED.
Related papers
- Retrieval Augmented Anomaly Detection (RAAD): Nimble Model Adjustment Without Retraining [3.037546128667634]
We introduce Retrieval Augmented Anomaly Detection, a novel method taking inspiration from Retrieval Augmented Generation.
Human annotated examples are sent to a vector store, which can modify model outputs on the very next processed batch for model inference.
arXiv Detail & Related papers (2025-02-26T20:17:16Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
This paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism.
The DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders.
Our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
arXiv Detail & Related papers (2023-11-09T05:24:20Z) - Split-Boost Neural Networks [1.1549572298362787]
We propose an innovative training strategy for feed-forward architectures - called split-boost.
Such a novel approach ultimately allows us to avoid explicitly modeling the regularization term.
The proposed strategy is tested on a real-world (anonymized) dataset within a benchmark medical insurance design problem.
arXiv Detail & Related papers (2023-09-06T17:08:57Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - Event Data Association via Robust Model Fitting for Event-based Object Tracking [66.05728523166755]
We propose a novel Event Data Association (called EDA) approach to explicitly address the event association and fusion problem.
The proposed EDA seeks for event trajectories that best fit the event data, in order to perform unifying data association and information fusion.
The experimental results show the effectiveness of EDA under challenging scenarios, such as high speed, motion blur, and high dynamic range conditions.
arXiv Detail & Related papers (2021-10-25T13:56:00Z) - Sound Event Detection Transformer: An Event-based End-to-End Model for
Sound Event Detection [12.915110466077866]
Sound event detection (SED) has gained increasing attention with its wide application in surveillance, video indexing, etc.
Existing models in SED mainly generate frame-level predictions, converting it into a sequence multi-label classification problem.
This paper firstly presents the 1D Detection Transformer (1D-DETR), inspired by Detection Transformer.
Given the characteristics of SED, the audio query and a one-to-many matching strategy are added to 1D-DETR to form the model of Sound Event Detection Transformer (SEDT)
arXiv Detail & Related papers (2021-10-05T12:56:23Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Incremental Learning Algorithm for Sound Event Detection [0.8399688944263841]
This paper presents a new learning strategy for the Sound Event Detection (SED) system to tackle the issues of i) knowledge migration from a pre-trained model to a new target model and ii) learning new sound events without forgetting the previously learned ones without re-training from scratch.
In order to migrate the previously learned knowledge from the source model to the target one, a neural adapter is employed on the top of the source model.
The neural adapter layer facilitates the target model to learn new sound events with minimal training data and maintaining the performance of the previously learned sound events similar to the source model.
arXiv Detail & Related papers (2020-03-26T22:32:11Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.