Retrieval Augmented Anomaly Detection (RAAD): Nimble Model Adjustment Without Retraining
- URL: http://arxiv.org/abs/2502.19534v1
- Date: Wed, 26 Feb 2025 20:17:16 GMT
- Title: Retrieval Augmented Anomaly Detection (RAAD): Nimble Model Adjustment Without Retraining
- Authors: Sam Pastoriza, Iman Yousfi, Christopher Redino, Marc Vucovich, Abdul Rahman, Sal Aguinaga, Dhruv Nandakumar,
- Abstract summary: We introduce Retrieval Augmented Anomaly Detection, a novel method taking inspiration from Retrieval Augmented Generation.<n>Human annotated examples are sent to a vector store, which can modify model outputs on the very next processed batch for model inference.
- Score: 3.037546128667634
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a novel mechanism for real-time (human-in-the-loop) feedback focused on false positive reduction to enhance anomaly detection models. It was designed for the lightweight deployment of a behavioral network anomaly detection model. This methodology is easily integrable to similar domains that require a premium on throughput while maintaining high precision. In this paper, we introduce Retrieval Augmented Anomaly Detection, a novel method taking inspiration from Retrieval Augmented Generation. Human annotated examples are sent to a vector store, which can modify model outputs on the very next processed batch for model inference. To demonstrate the generalization of this technique, we benchmarked several different model architectures and multiple data modalities, including images, text, and graph-based data.
Related papers
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Deep Graph Reprogramming [112.34663053130073]
"Deep graph reprogramming" is a model reusing task tailored for graph neural networks (GNNs)
We propose an innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm.
arXiv Detail & Related papers (2023-04-28T02:04:29Z) - D\'etection d'Objets dans les documents num\'eris\'es par r\'eseaux de
neurones profonds [0.0]
We study multiple tasks related to document layout analysis such as the detection of text lines, the splitting into acts or the detection of the writing support.
We propose two deep neural models following two different approaches.
arXiv Detail & Related papers (2023-01-27T14:45:45Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Missingness Augmentation: A General Approach for Improving Generative
Imputation Models [20.245637164975594]
We propose a novel data augmentation method called Missingness Augmentation (MisA) for generative imputation models.
As a general augmentation technique, MisA can be easily integrated into generative imputation frameworks.
Experimental results demonstrate that MisA significantly improves the performance of many recently proposed generative imputation models.
arXiv Detail & Related papers (2021-07-31T08:51:46Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.