On the Limits of Distributed Quantum Computing
- URL: http://arxiv.org/abs/2503.11394v1
- Date: Fri, 14 Mar 2025 13:36:51 GMT
- Title: On the Limits of Distributed Quantum Computing
- Authors: Francesco d'Amore,
- Abstract summary: Quantum algorithms can solve certain problems exponentially faster than classical ones.<n>In bandwidth-limited networks, quantum distributed networks have shown computational advantages over classical counterparts.<n>We focus on the LOCAL model of computation, a distributed computational model where computational power and communication bandwidth are unconstrained.
- Score: 0.9790236766474201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum advantage is well-established in centralized computing, where quantum algorithms can solve certain problems exponentially faster than classical ones. In the distributed setting, significant progress has been made in bandwidth-limited networks, where quantum distributed networks have shown computational advantages over classical counterparts. However, the potential of quantum computing in networks that are constrained only by large distances is not yet understood. We focus on the LOCAL model of computation (Linial, FOCS 1987), a distributed computational model where computational power and communication bandwidth are unconstrained, and its quantum generalization. In this brief survey, we summarize recent progress on the quantum-LOCAL model outlining its limitations with respect to its classical counterpart: we discuss emerging techniques, and highlight open research questions that could guide future efforts in the field.
Related papers
- Quantum-Accelerated Wireless Communications: Concepts, Connections, and Implications [59.0413662882849]
Quantum computing is poised to redefine the algorithmic foundations of communication systems.<n>This article outlines the fundamentals of quantum computing in a style familiar to the communications society.<n>We highlight a mathematical harmony between quantum and wireless systems, which makes the topic more enticing to wireless researchers.
arXiv Detail & Related papers (2025-06-25T22:25:47Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing [2.2989970407820484]
distributed quantum computing aims to boost the computational power of current quantum systems.
From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing.
Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
arXiv Detail & Related papers (2024-04-01T17:38:18Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Service Differentiation and Fair Sharing in Distributed Quantum
Computing [0.0]
In the future, quantum computers will become widespread and a network of quantum repeaters will provide them with end-to-end entanglement of remote quantum bits.
This paper investigates the issue of service differentiation in this new environment.
We then define the problem of how to select which computation nodes should participate in each pool.
arXiv Detail & Related papers (2023-01-10T14:16:42Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Resource Allocation in Quantum Networks for Distributed Quantum
Computing [0.0]
Current trend suggests that quantum computing will become available at scale for commercial purposes in the near future.
Quantum Internet requires the interconnection of quantum computers by quantum links and repeaters to exchange entangled quantum bits.
This paper investigates the requirements and objectives of smart computing on distributed nodes from the perspective of quantum network provisioning.
arXiv Detail & Related papers (2022-03-11T10:46:31Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Practical Quantum Computing: The value of local computation [0.0]
We discuss three key bottlenecks in near-term quantum computers.
bandwidth restrictions arising from data transfer between central processing units ( CPUs) and quantum processing units (QPUs)
latency delays in the hardware for round-trip communication, and timing restrictions driven by high error rates.
arXiv Detail & Related papers (2020-09-17T19:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.