Practical Quantum Computing: The value of local computation
- URL: http://arxiv.org/abs/2009.08513v1
- Date: Thu, 17 Sep 2020 19:49:47 GMT
- Title: Practical Quantum Computing: The value of local computation
- Authors: James R. Cruise, Neil I. Gillespie, Brendan Reid
- Abstract summary: We discuss three key bottlenecks in near-term quantum computers.
bandwidth restrictions arising from data transfer between central processing units ( CPUs) and quantum processing units (QPUs)
latency delays in the hardware for round-trip communication, and timing restrictions driven by high error rates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As we enter the era of useful quantum computers we need to better understand
the limitations of classical support hardware, and develop mitigation
techniques to ensure effective qubit utilisation. In this paper we discuss
three key bottlenecks in near-term quantum computers: bandwidth restrictions
arising from data transfer between central processing units (CPUs) and quantum
processing units (QPUs), latency delays in the hardware for round-trip
communication, and timing restrictions driven by high error rates. In each case
we consider a near-term quantum algorithm to highlight the bottleneck:
randomised benchmarking to showcase bandwidth limitations, adaptive noisy,
intermediate scale quantum (NISQ)-era algorithms for the latency bottleneck and
quantum error correction techniques to highlight the restrictions imposed by
qubit error rates. In all three cases we discuss how these bottlenecks arise in
the current paradigm of executing all the classical computation on the CPU, and
how these can be mitigated by providing access to local classical computational
resources in the QPU.
Related papers
- On the Limits of Distributed Quantum Computing [0.9790236766474201]
Quantum algorithms can solve certain problems exponentially faster than classical ones.
In bandwidth-limited networks, quantum distributed networks have shown computational advantages over classical counterparts.
We focus on the LOCAL model of computation, a distributed computational model where computational power and communication bandwidth are unconstrained.
arXiv Detail & Related papers (2025-03-14T13:36:51Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Demonstration of algorithmic quantum speedup [0.0]
An experimental demonstration of a provable algorithmic quantum speedup has remained elusive.
We implement the single-shot Bernstein-Vazirani algorithm, which solves the problem of identifying a hidden bitstring.
The speedup is observed on only one of the two QCs.
arXiv Detail & Related papers (2022-07-15T17:59:47Z) - ScaleQC: A Scalable Framework for Hybrid Computation on Quantum and
Classical Processors [25.18520278107402]
Quantum processing unit (QPU) has to satisfy highly demanding quantity and quality requirements on its qubits.
Quantum circuit cutting techniques cut and distribute a large quantum circuit into multiple smaller subcircuits feasible for less powerful QPUs.
Our tool, called ScaleQC, addresses the bottlenecks by developing novel algorithmic techniques.
arXiv Detail & Related papers (2022-07-03T01:44:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via
Cost-Effective Uncomputation [7.92565122267857]
We present a compilation infrastructure that tackles allocation and reclamation of scratch qubits (called ancilla) in quantum programs.
At its core, SQUARE strategically performs uncomputation to create opportunities for qubit reuse.
Our results show that SQUARE improves the average success rate of NISQ applications by 1.47X.
arXiv Detail & Related papers (2020-04-18T06:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.