Deep Learning Agents Trained For Avoidance Behave Like Hawks And Doves
- URL: http://arxiv.org/abs/2503.11452v1
- Date: Fri, 14 Mar 2025 14:41:08 GMT
- Title: Deep Learning Agents Trained For Avoidance Behave Like Hawks And Doves
- Authors: Aryaman Reddi, Glenn Vinnicombe,
- Abstract summary: We present optimal strategies expressed by deep learning agents playing a simple avoidance game.<n>We analyse the learning and behaviour of two agents within a symmetrical grid world that must cross paths to reach a target destination.<n>Our findings indicate that the fully trained network exhibits behaviour similar to that of the game Hawks and Doves, in that one agent employs an aggressive strategy to reach the target while the other learns how to avoid the aggressive agent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present heuristically optimal strategies expressed by deep learning agents playing a simple avoidance game. We analyse the learning and behaviour of two agents within a symmetrical grid world that must cross paths to reach a target destination without crashing into each other or straying off of the grid world in the wrong direction. The agent policy is determined by one neural network that is employed in both agents. Our findings indicate that the fully trained network exhibits behaviour similar to that of the game Hawks and Doves, in that one agent employs an aggressive strategy to reach the target while the other learns how to avoid the aggressive agent.
Related papers
- Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
In this paper, we investigate alignment through the lens of two-agent games, involving iterative interactions between an adversarial and a defensive agent.
We theoretically demonstrate that this iterative reinforcement learning optimization converges to a Nash Equilibrium for the game induced by the agents.
Experimental results in safety scenarios demonstrate that learning in such a competitive environment not only fully trains agents but also leads to policies with enhanced generalization capabilities for both adversarial and defensive agents.
arXiv Detail & Related papers (2024-06-16T15:24:50Z) - Mastering Percolation-like Games with Deep Learning [0.0]
We devise a single-player game on a lattice that mimics the logic of an attacker attempting to destroy a network.
The objective of the game is to disable all nodes in the fewest number of steps.
We train agents on different definitions of robustness and compare the learned strategies.
arXiv Detail & Related papers (2023-05-12T15:37:45Z) - Game-theoretic Objective Space Planning [4.989480853499916]
Understanding intent of other agents is crucial to deploying autonomous systems in adversarial multi-agent environments.
Current approaches either oversimplify the discretization of the action space of agents or fail to recognize the long-term effect of actions and become myopic.
We propose a novel dimension reduction method that encapsulates diverse agent behaviors while conserving the continuity of agent actions.
arXiv Detail & Related papers (2022-09-16T07:35:20Z) - Coach-assisted Multi-Agent Reinforcement Learning Framework for
Unexpected Crashed Agents [120.91291581594773]
We present a formal formulation of a cooperative multi-agent reinforcement learning system with unexpected crashes.
We propose a coach-assisted multi-agent reinforcement learning framework, which introduces a virtual coach agent to adjust the crash rate during training.
To the best of our knowledge, this work is the first to study the unexpected crashes in the multi-agent system.
arXiv Detail & Related papers (2022-03-16T08:22:45Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
We develop a competitive multi agent environment called FortAttack in which two teams compete against each other.
We observe a natural emergence of heterogeneous behavior amongst homogeneous agents when such behavior can lead to the team's success.
We propose ensemble training, in which we utilize the evolved opponent strategies to train a single policy for friendly agents.
arXiv Detail & Related papers (2020-07-06T22:35:56Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
We present a study on how popular reinforcement learning algorithms can be adapted to learn and to play a real-world implementation of a competitive multiplayer card game.
We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style.
arXiv Detail & Related papers (2020-04-08T14:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.