論文の概要: Cloud2BIM: An open-source automatic pipeline for efficient conversion of large-scale point clouds into IFC format
- arxiv url: http://arxiv.org/abs/2503.11498v2
- Date: Tue, 18 Mar 2025 21:53:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 12:01:08.069902
- Title: Cloud2BIM: An open-source automatic pipeline for efficient conversion of large-scale point clouds into IFC format
- Title(参考訳): Cloud2BIM: IFCフォーマットへの大規模クラウドの効率的な変換のためのオープンソースの自動パイプライン
- Authors: Slávek Zbirovský, Václav Nežerka,
- Abstract要約: 本稿では,ポイントクラウドのBIMモデルへの変換を自動化するために設計された,オープンソースのソフトウェアツールであるCloud2BIMを紹介する。
既存のツールとは異なり、RANSACのような計算および校正集約技術を避け、非直交ジオメトリーをサポートし、高速競合ソリューションよりも最大7倍高速な処理速度を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Building Information Modeling (BIM) is an essential component in the sustainable reconstruction and revitalization of ageing structures. However, model creation usually relies on laborious manual transformation of the unstructured point cloud data provided by laser scans or photogrammetry. This paper presents Cloud2BIM, an open-source software tool designed to automate the conversion of point clouds into BIM models compliant with the Industry Foundation Classes (IFC) standard. Cloud2BIM integrates advanced algorithms for wall and slab segmentation, opening detection, and room zoning based on real wall surfaces, resulting in a comprehensive and fully automated workflow. Unlike existing tools, it avoids computationally- and calibration-intensive techniques such as RANSAC, supports non-orthogonal geometries, and provides unprecedented processing speed-achieving results up to seven times faster than fastest competing solutions. Systematic validation using benchmark datasets confirms that Cloud2BIM is an easy-to-use, efficient, and scalable solution for generating accurate BIM models, capable of converting extensive point cloud datasets for entire buildings into IFC format with minimal user input.
- Abstract(参考訳): 建築情報モデリング (BIM) は, 建築物の持続的再建と再生に欠かせない要素である。
しかし、モデル生成は通常、レーザースキャンやフォトグラムメトリーによって提供される非構造化の点雲データの厳密な手動変換に依存している。
本稿では,IFC規格に準拠したBIMモデルへのポイントクラウドの自動変換を目的とした,オープンソースのソフトウェアツールであるCloud2BIMを提案する。
Cloud2BIMは、壁面とスラブのセグメンテーション、開口検出、実際の壁面に基づく部屋分割のための高度なアルゴリズムを統合し、包括的な完全に自動化されたワークフローをもたらす。
既存のツールとは異なり、RANSACのような計算および校正集約技術を避け、非直交ジオメトリーをサポートし、高速競合ソリューションよりも最大7倍高速な処理速度を実現する。
ベンチマークデータセットを使用したシステム検証は、Cloud2BIMが正確なBIMモデルを生成するための、使いやすく、効率的でスケーラブルなソリューションであることを確認し、建物全体の広範なポイントクラウドデータセットを、最小限のユーザ入力でIFCフォーマットに変換することができる。
関連論文リスト
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
我々は、より大規模で正確なクラウドベースモデルに必要に応じて遅延しながら、より小さなモデルのローカル処理効率を活用するハイブリッドエッジクラウドソリューションを設計する。
具体的には、エッジモデルの出力が不確かである場合に予測可能な軽量スイッチャーモデルをトレーニングするための、新しい教師なしデータ生成手法であるDual-Model Distillation(DMD)を提案する。
動作分類タスクの実験結果から,我々のフレームワークは計算オーバーヘッドを少なくするだけでなく,大規模モデルのみを使用する場合と比較して精度も向上することが示された。
論文 参考訳(メタデータ) (2024-10-16T02:06:27Z) - GERA: Geometric Embedding for Efficient Point Registration Analysis [20.690695788384517]
本稿では, 純幾何学的アーキテクチャを活用し, 幾何学的情報をオフラインで構築する新たなポイントクラウド登録ネットワークを提案する。
本手法は, 3次元座標入力をオフライン構成の幾何符号化に置き換え, 一般化と安定性を改善した最初の方法である。
論文 参考訳(メタデータ) (2024-10-01T11:19:56Z) - Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning [116.75939193785143]
画像領域における視覚変換器(ViT)のコントラスト学習(CL)は、従来の畳み込みバックボーンのCLに匹敵する性能を達成した。
ViTで事前訓練した3Dポイントクラウドでは、マスク付きオートエンコーダ(MAE)モデリングが主流である。
論文 参考訳(メタデータ) (2024-07-08T12:28:56Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
Cloud-Edge Elastic Model Adaptation (CEMA)パラダイムを確立し、エッジモデルが前方伝播のみを実行するようにします。
CEMAでは,通信負担を軽減するため,不要なサンプルをクラウドにアップロードすることを避けるための2つの基準を考案した。
論文 参考訳(メタデータ) (2024-02-27T08:47:19Z) - Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) は、適応トークン選択機構によって強化された標準PTモデルである。
AdaPTは推論中のトークン数を動的に削減し、大きな点雲の効率的な処理を可能にする。
論文 参考訳(メタデータ) (2024-01-26T13:24:45Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan
Generation from Building Point Clouds [2.0859227544921874]
本研究では,レーザ走査型ビルディングポイント雲からのクラッタ耐性フロアプラン生成のためのハイブリッドセマンティック・ジオメトリ手法を提案する。
提案手法は,精度,リコール,インターセクション・オーバー・ユニオン(IOU),ベティ誤差,ワープ誤差の計測値を用いて評価する。
論文 参考訳(メタデータ) (2023-05-15T20:08:43Z) - DSMNet: Deep High-precision 3D Surface Modeling from Sparse Point Cloud
Frames [12.531880335603145]
既存のポイントクラウドモデリングデータセットは、ポイントクラウドモデリング効果自体よりも、ポーズまたは軌道精度によるモデリング精度を表現する。
スパースポイントクラウドフレームを用いた高精度3次元表面モデリングのための新しい学習ベースジョイントフレームワークDSMNetを提案する。
論文 参考訳(メタデータ) (2023-04-09T09:23:06Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
本稿では,ポイントクラウドの完了をセット・ツー・セットの翻訳問題として再定義する手法を提案する。
我々は、ポイントクラウド補完のためにTransformerエンコーダデコーダアーキテクチャを採用したPoinTrと呼ばれる新しいモデルを設計する。
本手法は,PCNで6.53 CD,ShapeNet-55で0.81 CD,現実世界のKITTIで0.392 MMDを実現する。
論文 参考訳(メタデータ) (2023-01-11T16:14:12Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
本稿では,点雲に基づく3次元オブジェクトの補完と分類手法を提案する。
デコーダの段階では,グローバルな活性化エントロピーの最大化を目的とした新しい演算子である地域畳み込みを提案する。
我々は,オブジェクトの完成度や分類,最先端の精度の達成など,異なる3次元タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2020-08-17T14:32:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。