論文の概要: Neutralizing Bias in LLM Reasoning using Entailment Graphs
- arxiv url: http://arxiv.org/abs/2503.11614v1
- Date: Fri, 14 Mar 2025 17:33:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:07:52.730081
- Title: Neutralizing Bias in LLM Reasoning using Entailment Graphs
- Title(参考訳): エンターメントグラフを用いたLLM推論における中性化バイアス
- Authors: Liang Cheng, Tianyi Li, Zhaowei Wang, Tianyang Liu, Mark Steedman,
- Abstract要約: LLMは自然言語推論(NLI)が可能であるとしばしば主張されるが、これはより複雑な推論の基盤として広く見なされている。
我々は,検証バイアスを低減するために,非教師なしのフレームワークを設計し,反実的推論データと微調整LDMを構築した。
我々のフレームワークは、元のNLIデータセットとバイアスニュートラル化されたNLIデータセットの推論性能を一貫して改善する。
- 参考スコア(独自算出の注目度): 13.5088417466172
- License:
- Abstract: LLMs are often claimed to be capable of Natural Language Inference (NLI), which is widely regarded as a cornerstone of more complex forms of reasoning. However, recent works show that LLMs still suffer from hallucinations in NLI due to attestation bias, where LLMs overly rely on propositional memory to build shortcuts. To solve the issue, we design an unsupervised framework to construct counterfactual reasoning data and fine-tune LLMs to reduce attestation bias. To measure bias reduction, we build bias-adversarial variants of NLI datasets with randomly replaced predicates in premises while keeping hypotheses unchanged. Extensive evaluations show that our framework can significantly reduce hallucinations from attestation bias. Then, we further evaluate LLMs fine-tuned with our framework on original NLI datasets and their bias-neutralized versions, where original entities are replaced with randomly sampled ones. Extensive results show that our framework consistently improves inferential performance on both original and bias-neutralized NLI datasets.
- Abstract(参考訳): LLMは自然言語推論(NLI)が可能であるとしばしば主張されるが、これはより複雑な推論の基盤として広く見なされている。
しかし、最近の研究によると、LLMは証明バイアスのために NLI の幻覚に悩まされており、LLM はショートカットを構築するために命題記憶を過度に頼っている。
この問題を解決するため,実証バイアスを低減するために,非教師なしの非教師的推論データと微調整LDMを構築した。
バイアス低減を測るために,前提条件にランダムに置換された述語を用いたNLIデータセットのバイアス・逆数変種を構築し,仮説をそのまま維持する。
大規模な評価の結果,本フレームワークは検査バイアスから幻覚を著しく低減できることがわかった。
さらに,元のNLIデータセットと,そのバイアスニュートラル化バージョンをフレームワークで微調整し,元のエンティティをランダムにサンプリングしたものに置き換える。
その結果,本フレームワークは元のNLIデータセットとバイアスニュートラル化NLIデータセットの推論性能を常に向上することがわかった。
関連論文リスト
- Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - Self-Preference Bias in LLM-as-a-Judge [13.880151307013321]
大規模言語モデル(LLM)における自己参照バイアスを測定するための新しい指標を提案する。
以上の結果から, GPT-4は自己選好バイアスがかなり高いことが示唆された。
このことは、偏見の本質は難易度にあることを示唆し、自己選好バイアスは LLM がより親しみやすいテキストを好むため存在することを示唆している。
論文 参考訳(メタデータ) (2024-10-29T07:42:18Z) - From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning [91.79567270986901]
大規模言語モデル(LLM)は、ユーザプロンプトへの順守を、妥当な応答よりも優先する傾向がある。
近年の研究では、教師付き微調整(SFT)を用いて、梅毒問題を軽減することが提案されている。
そこで本研究では,特定の目的のために関心のあるモジュールを調整した新しいピンポイントチューニング(SPT)を提案する。
論文 参考訳(メタデータ) (2024-09-03T07:01:37Z) - Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models [0.0]
大規模言語モデル(LLM)は、その誕生以来、様々な学術分野や産業分野にまたがって大きな注目を集めてきた。
LLMはしばしば「ハロシン化問題」に悩まされるが、出力は文法的にも論理的にも一貫性があり、事実の正確性に欠ける。
論文 参考訳(メタデータ) (2024-08-09T14:34:32Z) - Robustness of LLMs to Perturbations in Text [2.0670689746336]
大規模言語モデル(LLM)は素晴らしいパフォーマンスを示していますが、現実のデータでは避けられないノイズを処理できますか?
この研究は、LLMのテキストのモルフォロジー変化に対するレジリエンスを調査することによって、この重要な問題に取り組む。
以上の結果から, LLM は, 一般の信念とは対照的に, 文中での騒々しい摂動に対して静かであることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-12T04:50:17Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
大規模言語モデル(LLM)は、特定のタスクの自己フィードバックを通じてパフォーマンスを向上し、他のタスクを劣化させる。
我々は、LSMの自己バイアス(自称世代を好む傾向)を正式に定義する。
我々は、翻訳、制約付きテキスト生成、数学的推論の6つのLCMを解析する。
論文 参考訳(メタデータ) (2024-02-18T03:10:39Z) - Self-Supervised Position Debiasing for Large Language Models [39.261233221850155]
大規模言語モデル(LLM)における位置バイアスを軽減するための自己教師型位置偏差検出(SOD)フレームワークを提案する。
8つのデータセットと5つのタスクの実験により、SODは3つのタイプの位置バイアスを緩和する既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-01-02T14:12:41Z) - The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context
Learning [61.68787689234622]
最近の研究であるLIMAは、アライメントチューニングに1Kの例のみを用いることで、アライメント性能も著しく向上することを示した。
これにより、アライメントチューニングがベースLLMをどのように変換するかという疑問が提起される。
本研究では,チューニングフリーとチューニングベースアライメントのギャップを戦略的プロンプトによって著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-12-04T00:46:11Z) - Improving Factual Consistency of News Summarization by Contrastive Preference Optimization [65.11227166319546]
大規模言語モデル(LLM)は、本来の記事と現実的に矛盾する要約を生成する。
これらの幻覚は、従来の方法による検出が困難である。
本稿では,LLMの適合性を解消し,忠実で偽のコンテンツを生成するコントラスト優先最適化(CPO)を提案する。
論文 参考訳(メタデータ) (2023-10-30T08:40:16Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。