Chiral cat code: Enhanced error correction induced by higher-order nonlinearities
- URL: http://arxiv.org/abs/2503.11624v1
- Date: Fri, 14 Mar 2025 17:45:19 GMT
- Title: Chiral cat code: Enhanced error correction induced by higher-order nonlinearities
- Authors: AdriĆ Labay-Mora, Alberto Mercurio, Vincenzo Savona, Gian Luca Giorgi, Fabrizio Minganti,
- Abstract summary: We introduce a novel bosonic quantum code generalizing Kerr cat qubits that exploits higher-order nonlinearities.<n>The code displays optical bistability, i.e., the simultaneous presence of multiple long-lived states.<n>Thanks to the chiral structure of the phase space of this system, the error space can be engineered to capture'' bit flip events in the code space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a Schr\"odinger chiral cat qubit, a novel bosonic quantum code generalizing Kerr cat qubits that exploits higher-order nonlinearities. Compared to a standard Kerr cat, the chiral cat qubit allows additional correction of bit-flip errors within the Hilbert space of a single bosonic oscillator. Indeed, this code displays optical bistability, i.e., the simultaneous presence of multiple long-lived states. Two of them define the code space and two define an error space. Thanks to the chiral structure of the phase space of this system, the error space can be engineered to ``capture'' bit flip events in the code space (a bit-flip trap), without affecting the quantum information stored in the system. Therefore, it is possible to perform detection and correction of errors. We demonstrate how this topological effect can be particularly efficient in the presence of large dephasing. We provide concrete examples of the performance of the code and show the possibility of applying quantum operations rapidly and efficiently. Beyond the interest in this single technological application, our work demonstrates how the topology of phase space can enhance the performance of bosonic codes.
Related papers
- Order-of-magnitude extension of qubit lifetimes with a decoherence-free subspace quantum error correction code [0.0]
We report on a robust quantum memory design using a decoherence-free subspace quantum error correction code.
The resulting encoding scheme is characterized for long probe times, and shown to extend the memory time by over an order of magnitude compared to physical qubits.
arXiv Detail & Related papers (2025-03-28T02:58:34Z) - Optimizing compilation of error correction codes for 2xN quantum dot arrays and its NP-hardness [2.7817719859314263]
Hardware-specific error correction codes can achieve fault-tolerance while respecting other constraints.<n>Recent advancements have demonstrated the shuttling of electron and hole spin qubits through a quantum dot array with high fidelity.<n>We develop a suite of methods for compiling any stabilizer error-correcting code's syndrome-extraction circuit to run with a minimal number of shuttling operations.
arXiv Detail & Related papers (2025-01-15T19:00:00Z) - Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits [0.0]
This perspective manuscript describes how bosonic codes, particularly grid state encodings, offer a pathway to scalable fault-tolerant quantum computing.
By leveraging the large Hilbert space of bosonic modes, quantum error correction can operate at the single physical unit level.
We argue that it offers the shortest path to achieving fault tolerance in gate-based quantum computing processors with a MHz logical clock rate.
arXiv Detail & Related papers (2024-09-09T17:20:06Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
We propose and analyze the error correction performance of a dissipatively stabilized squeezed cat qubit.
We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase flip rate unchanged.
arXiv Detail & Related papers (2022-10-24T16:02:20Z) - Construction of Bias-preserving Operations for Pair-cat Code [17.34207569961146]
Multi-level systems can achieve a desirable set of bias-preserving quantum operations.
Cat codes are not compatible with continuous quantum error correction against excitation loss error.
We generalize the bias-preserving operations to pair-cat codes to be compatible with continuous quantum error correction against both bosonic loss and dephasing errors.
arXiv Detail & Related papers (2022-08-14T20:45:26Z) - Quantum error correction using squeezed Schr\"odinger cat states [0.0]
We develop a bosonic quantum code relying on squeezed cat states.
We show that the squeezed cat code has a resilience to particle loss errors that significantly outperforms that of the conventional cat code.
arXiv Detail & Related papers (2022-01-07T18:09:09Z) - Fault-tolerant multiqubit geometric entangling gates using photonic
cat-state qubits [0.8024702830680637]
We propose a theoretical protocol to implement multiqubit geometric gates using photonic cat-state qubits.
These cat-state qubits are promising for hardware-efficient universal quantum computing.
arXiv Detail & Related papers (2021-09-10T03:04:32Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.