Automating Mathematical Proof Generation Using Large Language Model Agents and Knowledge Graphs
- URL: http://arxiv.org/abs/2503.11657v2
- Date: Sat, 26 Jul 2025 09:39:50 GMT
- Title: Automating Mathematical Proof Generation Using Large Language Model Agents and Knowledge Graphs
- Authors: Vincent Li, Tim Knappe, Yule Fu, Kevin Han, Kevin Zhu,
- Abstract summary: KG-prover augments general-purpose LLMs to construct and formalize mathematical proofs.<n>General-purpose LLMs improve up to 21% on miniF2F-test when combined with KG-Prover.<n> KG-Prover achieves consistent improvements ranging from 2-11% on the ProofNet, miniF2F-test, and MUSTARD datasets without additional scaling.
- Score: 2.534053759586253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have demonstrated remarkable capabilities in natural language processing tasks requiring multi-step logical reasoning capabilities, such as automated theorem proving. However, challenges persist within theorem proving, such as the identification of key mathematical concepts, understanding their interrelationships, and formalizing proofs correctly within natural language. We present KG-prover, a novel framework that leverages knowledge graphs mined from reputable mathematical texts to augment general-purpose LLMs to construct and formalize mathematical proofs. We also study the effects of scaling graph-based, test-time compute using KG-Prover, demonstrating significant performance improvements over baselines across multiple datasets. General-purpose LLMs improve up to 21\% on miniF2F-test when combined with KG-Prover, with consistent improvements ranging from 2-11\% on the ProofNet, miniF2F-test, and MUSTARD datasets without additional scaling. Furthermore, KG-Prover with o4-mini achieves over 50% miniF2F-test. This work provides a promising approach for augmenting natural language proof reasoning with knowledge graphs without the need for additional finetuning.
Related papers
- Generating Millions Of Lean Theorems With Proofs By Exploring State Transition Graphs [6.65877320351217]
We developed LeanNavigator, a novel method for generating a large-scale dataset of Lean theorems and proofs.<n>We generated 4.7 million theorems totaling 1 billion tokens, surpassing previous datasets by more than an order of magnitude.<n>Using this extensive dataset, we trained an AI model that outperforms the state-of-the-art ReProver model in theorem-proving tasks.
arXiv Detail & Related papers (2025-02-16T06:20:39Z) - Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
This work proposes Alchemy, a framework for data synthesis that constructs formal theorems through symbolic mutation.<n>For each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it.<n>As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M.
arXiv Detail & Related papers (2024-10-21T08:04:21Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
We propose Math-Minos, a natural language feedback-enhanced verifier.
Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier.
arXiv Detail & Related papers (2024-06-20T06:42:27Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARD is a framework that masters uniform synthesis of theorem and proof data of high quality and diversity.
We present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points.
We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data.
arXiv Detail & Related papers (2024-02-14T05:57:58Z) - Enhancing Neural Theorem Proving through Data Augmentation and Dynamic
Sampling Method [1.8130068086063336]
We introduce DS-Prover, a novel dynamic sampling method for theorem proving.
We augment the training dataset by decomposing simplification and rewrite tactics with multiple premises into tactics with single premises.
We achieve a state-of-the-art performance (Pass@1) of 14.2% on the ProofNet dataset and a performance of 29.8% on MiniF2F.
arXiv Detail & Related papers (2023-12-20T09:55:21Z) - TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models [68.65075559137608]
We propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proofs but also evaluates a generative LM's reasoning ability on formulas.
We gather trigonometric expressions and their reduced forms from the web, annotate the simplification process manually, and translate it into the Lean formal language system.
We develop an automatic generator based on Lean-Gym to create dataset splits of varying difficulties and distributions in order to thoroughly analyze the model's generalization ability.
arXiv Detail & Related papers (2023-10-16T08:42:39Z) - Lila: A Unified Benchmark for Mathematical Reasoning [59.97570380432861]
LILA is a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions.
We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs.
We introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA.
arXiv Detail & Related papers (2022-10-31T17:41:26Z) - Proof Artifact Co-training for Theorem Proving with Language Models [4.934817254755007]
PACT (bf Proof bf Artifact bf Co-bf Training) is a general methodology for extracting self-supervised data from kernel-level proof terms for co-training.
We instrument Lean with a neural theorem prover driven by a Transformer language model and show that PACT improves theorem proving success rate on a held-out suite of test theorems from 32% to 48%.
arXiv Detail & Related papers (2021-02-11T18:59:24Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
This work is motivated by the possibility that a major limitation of automated theorem provers compared to humans might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath formalization language, and analyze its performance.
arXiv Detail & Related papers (2020-09-07T19:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.