Exploring Causality for HRI: A Case Study on Robotic Mental Well-being Coaching
- URL: http://arxiv.org/abs/2503.11684v1
- Date: Tue, 04 Mar 2025 08:56:47 GMT
- Title: Exploring Causality for HRI: A Case Study on Robotic Mental Well-being Coaching
- Authors: Micol Spitale, Srikar Babu, Serhan Cakmak, Jiaee Cheong, Hatice Gunes,
- Abstract summary: This study aims to gain deeper insights into how adaptability can enhance well-being during interactions.<n>By conducting both macro- and micro-level causal analyses, this study aims to gain deeper insights into how adaptability can enhance well-being during interactions.
- Score: 9.131470351183392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the primary goals of Human-Robot Interaction (HRI) research is to develop robots that can interpret human behavior and adapt their responses accordingly. Adaptive learning models, such as continual and reinforcement learning, play a crucial role in improving robots' ability to interact effectively in real-world settings. However, these models face significant challenges due to the limited availability of real-world data, particularly in sensitive domains like healthcare and well-being. This data scarcity can hinder a robot's ability to adapt to new situations. To address these challenges, causality provides a structured framework for understanding and modeling the underlying relationships between actions, events, and outcomes. By moving beyond mere pattern recognition, causality enables robots to make more explainable and generalizable decisions. This paper presents an exploratory causality-based analysis through a case study of an adaptive robotic coach delivering positive psychology exercises over four weeks in a workplace setting. The robotic coach autonomously adapts to multimodal human behaviors, such as facial valence and speech duration. By conducting both macro- and micro-level causal analyses, this study aims to gain deeper insights into how adaptability can enhance well-being during interactions. Ultimately, this research seeks to advance our understanding of how causality can help overcome challenges in HRI, particularly in real-world applications.
Related papers
- Causality-enhanced Decision-Making for Autonomous Mobile Robots in Dynamic Environments [2.037693212747679]
We propose a novel causality-based decision-making framework to predict battery usage and human obstructions.
We also develop a new Gazebo-based simulator designed to model context-sensitive human-robot spatial interactions.
Our findings highlight how causal reasoning enables autonomous robots to operate more efficiently and safely in dynamic environments shared with humans.
arXiv Detail & Related papers (2025-04-16T09:26:04Z) - Teleology-Driven Affective Computing: A Causal Framework for Sustained Well-Being [0.1636303041090359]
We propose a teleology-driven affective computing framework that unifies major emotion theories.<n>We advocate for creating a "dataverse" of personal affective events.<n>We introduce a meta-reinforcement learning paradigm to train agents in simulated environments.
arXiv Detail & Related papers (2025-02-24T14:07:53Z) - Neuroadaptation in Physical Human-Robot Collaboration [34.73541717674098]
We have demonstrated a novel closed-loop-neuroadaptive framework for pHRC.
We have applied cognitive conflict information in a closed-loop manner, with the help of reinforcement learning, to adapt to robot strategy.
The experiment results show that the closed-loop-based neuroadaptive framework successfully reduces the level of cognitive conflict.
arXiv Detail & Related papers (2023-09-30T12:16:24Z) - I am Only Happy When There is Light: The Impact of Environmental Changes
on Affective Facial Expressions Recognition [65.69256728493015]
We study the impact of different image conditions on the recognition of arousal from human facial expressions.
Our results show how the interpretation of human affective states can differ greatly in either the positive or negative direction.
arXiv Detail & Related papers (2022-10-28T16:28:26Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems.
This paper presents an interactive approach of a socially assistive robot that can dynamically select kinematic features of assessment on individual patient's exercises to predict the quality of motion.
arXiv Detail & Related papers (2020-07-13T16:12:05Z) - Towards hybrid primary intersubjectivity: a neural robotics library for
human science [4.232614032390374]
We study primary intersubjectivity as a second person perspective experience characterized by predictive engagement.
We propose an open-source methodology named textitneural robotics library (NRL) for experimental human-robot interaction.
We discuss some ways human-robot (hybrid) intersubjectivity can contribute to human science research.
arXiv Detail & Related papers (2020-06-29T11:35:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.