The BIG Argument for AI Safety Cases
- URL: http://arxiv.org/abs/2503.11705v3
- Date: Mon, 31 Mar 2025 08:28:25 GMT
- Title: The BIG Argument for AI Safety Cases
- Authors: Ibrahim Habli, Richard Hawkins, Colin Paterson, Philippa Ryan, Yan Jia, Mark Sujan, John McDermid,
- Abstract summary: The BIG argument adopts a whole-system approach to constructing a safety case for AI systems of varying capability, autonomy and criticality.<n>It is balanced by addressing safety alongside other critical ethical issues such as privacy and equity.<n>It is integrated by bringing together the social, ethical and technical aspects of safety assurance in a way that is traceable and accountable.
- Score: 4.0675753909100445
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present our Balanced, Integrated and Grounded (BIG) argument for assuring the safety of AI systems. The BIG argument adopts a whole-system approach to constructing a safety case for AI systems of varying capability, autonomy and criticality. Firstly, it is balanced by addressing safety alongside other critical ethical issues such as privacy and equity, acknowledging complexities and trade-offs in the broader societal impact of AI. Secondly, it is integrated by bringing together the social, ethical and technical aspects of safety assurance in a way that is traceable and accountable. Thirdly, it is grounded in long-established safety norms and practices, such as being sensitive to context and maintaining risk proportionality. Whether the AI capability is narrow and constrained or general-purpose and powered by a frontier or foundational model, the BIG argument insists on a systematic treatment of safety. Further, it places a particular focus on the novel hazardous behaviours emerging from the advanced capabilities of frontier AI models and the open contexts in which they are rapidly being deployed. These complex issues are considered within a wider AI safety case, approaching assurance from both technical and sociotechnical perspectives. Examples illustrating the use of the BIG argument are provided throughout the paper.
Related papers
- An Approach to Technical AGI Safety and Security [72.83728459135101]
We develop an approach to address the risk of harms consequential enough to significantly harm humanity.
We focus on technical approaches to misuse and misalignment.
We briefly outline how these ingredients could be combined to produce safety cases for AGI systems.
arXiv Detail & Related papers (2025-04-02T15:59:31Z) - AI Safety for Everyone [3.440579243843689]
Recent discussions and research in AI safety have increasingly emphasized the deep connection between AI safety and existential risk from advanced AI systems.
This framing may exclude researchers and practitioners who are committed to AI safety but approach the field from different angles.
We find a vast array of concrete safety work that addresses immediate and practical concerns with current AI systems.
arXiv Detail & Related papers (2025-02-13T13:04:59Z) - Position: A taxonomy for reporting and describing AI security incidents [57.98317583163334]
We argue that specific are required to describe and report security incidents of AI systems.<n>Existing frameworks for either non-AI security or generic AI safety incident reporting are insufficient to capture the specific properties of AI security.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - Landscape of AI safety concerns -- A methodology to support safety assurance for AI-based autonomous systems [0.0]
AI has emerged as a key technology, driving advancements across a range of applications.<n>The challenge of assuring safety in systems that incorporate AI components is substantial.<n>We propose a novel methodology designed to support the creation of safety assurance cases for AI-based systems.
arXiv Detail & Related papers (2024-12-18T16:38:16Z) - Safety cases for frontier AI [0.8987776881291144]
Safety cases are reports that make a structured argument, supported by evidence, that a system is safe enough in a given operational context.
Safety cases are already common in other safety-critical industries such as aviation and nuclear power.
We explain why they may also be a useful tool in frontier AI governance, both in industry self-regulation and government regulation.
arXiv Detail & Related papers (2024-10-28T22:08:28Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.<n>We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
We argue that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security.
We introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security.
arXiv Detail & Related papers (2024-05-29T21:00:47Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - X-Risk Analysis for AI Research [24.78742908726579]
We provide a guide for how to analyze AI x-risk.
First, we review how systems can be made safer today.
Next, we discuss strategies for having long-term impacts on the safety of future systems.
arXiv Detail & Related papers (2022-06-13T00:22:50Z) - Hard Choices in Artificial Intelligence [0.8594140167290096]
We show how this vagueness cannot be resolved through mathematical formalism alone.
We show how this vagueness cannot be resolved through mathematical formalism alone.
arXiv Detail & Related papers (2021-06-10T09:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.