Landscape of AI safety concerns -- A methodology to support safety assurance for AI-based autonomous systems
- URL: http://arxiv.org/abs/2412.14020v1
- Date: Wed, 18 Dec 2024 16:38:16 GMT
- Title: Landscape of AI safety concerns -- A methodology to support safety assurance for AI-based autonomous systems
- Authors: Ronald Schnitzer, Lennart Kilian, Simon Roessner, Konstantinos Theodorou, Sonja Zillner,
- Abstract summary: AI has emerged as a key technology, driving advancements across a range of applications.<n>The challenge of assuring safety in systems that incorporate AI components is substantial.<n>We propose a novel methodology designed to support the creation of safety assurance cases for AI-based systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) has emerged as a key technology, driving advancements across a range of applications. Its integration into modern autonomous systems requires assuring safety. However, the challenge of assuring safety in systems that incorporate AI components is substantial. The lack of concrete specifications, and also the complexity of both the operational environment and the system itself, leads to various aspects of uncertain behavior and complicates the derivation of convincing evidence for system safety. Nonetheless, scholars proposed to thoroughly analyze and mitigate AI-specific insufficiencies, so-called AI safety concerns, which yields essential evidence supporting a convincing assurance case. In this paper, we build upon this idea and propose the so-called Landscape of AI Safety Concerns, a novel methodology designed to support the creation of safety assurance cases for AI-based systems by systematically demonstrating the absence of AI safety concerns. The methodology's application is illustrated through a case study involving a driverless regional train, demonstrating its practicality and effectiveness.
Related papers
- The BIG Argument for AI Safety Cases [4.0675753909100445]
The BIG argument adopts a whole-system approach to constructing a safety case for AI systems of varying capability, autonomy and criticality.
It is balanced by addressing safety alongside other critical ethical issues such as privacy and equity.
It is integrated by bringing together the social, ethical and technical aspects of safety assurance in a way that is traceable and accountable.
arXiv Detail & Related papers (2025-03-12T11:33:28Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
We introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety.
AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques.
We conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness.
arXiv Detail & Related papers (2025-02-24T02:11:52Z) - AI Safety for Everyone [3.440579243843689]
Recent discussions and research in AI safety have increasingly emphasized the deep connection between AI safety and existential risk from advanced AI systems.
This framing may exclude researchers and practitioners who are committed to AI safety but approach the field from different angles.
We find a vast array of concrete safety work that addresses immediate and practical concerns with current AI systems.
arXiv Detail & Related papers (2025-02-13T13:04:59Z) - AI Safety is Stuck in Technical Terms -- A System Safety Response to the International AI Safety Report [0.0]
Safety has become the central value around which dominant AI governance efforts are being shaped.
The report focuses on the safety risks of general-purpose AI and available technical mitigation approaches.
The system safety discipline has dealt with the safety risks of software-based systems for many decades.
arXiv Detail & Related papers (2025-02-05T22:37:53Z) - Position: A taxonomy for reporting and describing AI security incidents [57.98317583163334]
We argue that specific are required to describe and report security incidents of AI systems.
Existing frameworks for either non-AI security or generic AI safety incident reporting are insufficient to capture the specific properties of AI security.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI Safety is an emerging area of critical importance to the safe adoption and deployment of AI systems.
Our goal is to promote advancement in AI safety research, and ultimately enhance people's trust in digital transformation.
arXiv Detail & Related papers (2024-08-23T09:33:48Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.
We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Safe AI -- How is this Possible? [0.45687771576879593]
Traditional safety engineering is coming to a turning point moving from deterministic, non-evolving systems operating in well-defined contexts to increasingly autonomous and learning-enabled AI systems acting in largely unpredictable operating contexts.
We outline some of underlying challenges of safe AI and suggest a rigorous engineering framework for minimizing uncertainty, thereby increasing confidence, up to tolerable levels, in the safe behavior of AI systems.
arXiv Detail & Related papers (2022-01-25T16:32:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.