論文の概要: Privacy-Preserved Automated Scoring using Federated Learning for Educational Research
- arxiv url: http://arxiv.org/abs/2503.11711v1
- Date: Wed, 12 Mar 2025 19:06:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:18.650367
- Title: Privacy-Preserved Automated Scoring using Federated Learning for Educational Research
- Title(参考訳): 教育研究のためのフェデレーションラーニングを用いたプライバシー保護型自動装飾
- Authors: Ehsan Latif, Xiaoming Zhai,
- Abstract要約: 本研究では,教育評価における自動スコアリングのための統合学習フレームワークを提案する。
生徒の反応はエッジデバイス上でローカルに処理され、最適化されたモデルパラメータのみが中央集約サーバと共有される。
本研究では,9つの中学校における評価データを用いて,従来の学習モデルと統合学習に基づくスコアリングモデルの精度を比較した。
- 参考スコア(独自算出の注目度): 1.2556373621040728
- License:
- Abstract: Data privacy remains a critical concern in educational research, necessitating Institutional Review Board (IRB) certification and stringent data handling protocols to ensure compliance with ethical standards. Traditional approaches rely on anonymization and controlled data-sharing mechanisms to facilitate research while mitigating privacy risks. However, these methods still involve direct access to raw student data, posing potential vulnerabilities and being time-consuming. This study proposes a federated learning (FL) framework for automatic scoring in educational assessments, eliminating the need to share raw data. Our approach leverages client-side model training, where student responses are processed locally on edge devices, and only optimized model parameters are shared with a central aggregation server. To effectively aggregate heterogeneous model updates, we introduce an adaptive weighted averaging strategy, which dynamically adjusts weight contributions based on client-specific learning characteristics. This method ensures robust model convergence while preserving privacy. We evaluate our framework using assessment data from nine middle schools, comparing the accuracy of federated learning-based scoring models with traditionally trained centralized models. A statistical significance test (paired t-test, $t(8) = 2.29, p = 0.051$) confirms that the accuracy difference between the two approaches is not statistically significant, demonstrating that federated learning achieves comparable performance while safeguarding student data. Furthermore, our method significantly reduces data collection, processing, and deployment overhead, accelerating the adoption of AI-driven educational assessments in a privacy-compliant manner.
- Abstract(参考訳): データプライバシは、教育研究、IRB(Institutional Review Board)認定、倫理基準の遵守を保証するための厳格なデータハンドリングプロトコルを必要としている。
従来のアプローチでは、プライバシーリスクを軽減しながら研究を促進するために匿名化とデータ共有のメカニズムが利用されていた。
しかし、これらの手法は依然として生のデータに直接アクセスし、潜在的な脆弱性を発生させ、時間を要する。
本研究は,教育評価における自動スコアリングのためのフェデレーション学習(FL)フレームワークを提案し,生データを共有する必要をなくした。
提案手法は,エッジデバイス上で生徒の反応をローカルに処理し,最適化されたモデルパラメータのみを中央集約サーバと共有するクライアントサイドモデルトレーニングを活用する。
ヘテロジニアスモデル更新を効果的に集約するために,クライアント固有の学習特性に基づいて重み付けを動的に調整する適応重み付け平均化戦略を導入する。
この方法は、プライバシーを維持しながら堅牢なモデル収束を保証する。
本研究では,9つの中学校における評価データを用いて,従来の学習モデルと統合学習に基づくスコアリングモデルの精度を比較した。
統計的意義テスト (paired t-test, $t(8) = 2.29, p = 0.051$) では、2つのアプローチの精度差が統計的に有意ではないことが確認され、フェデレートラーニングが生徒データを保護しながら同等のパフォーマンスを達成することを示した。
さらに,本手法は,データ収集,処理,デプロイメントのオーバーヘッドを大幅に低減し,プライバシーに配慮したAI駆動型教育評価の導入を加速させる。
関連論文リスト
- Advancing Personalized Federated Learning: Integrative Approaches with AI for Enhanced Privacy and Customization [0.0]
本稿では,最先端AI技術を用いてPFLを強化する新しい手法を提案する。
本稿では、個々のクライアントモデルの性能を高め、堅牢なプライバシ保護機構を保証するモデルを提案する。
この研究は、真のパーソナライズされたプライバシを重視したAIシステムの新たな時代への道を開くものだ。
論文 参考訳(メタデータ) (2025-01-30T07:03:29Z) - Adaptive Client Selection in Federated Learning: A Network Anomaly Detection Use Case [0.30723404270319693]
本稿では,差分プライバシーとフォールトトレランスを組み込んだFL(Federated Learning)のクライアント選択フレームワークを提案する。
その結果、FedL2Pアプローチと比較して、精度が7%向上し、トレーニング時間が25%短縮された。
論文 参考訳(メタデータ) (2025-01-25T02:50:46Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Federated Knowledge Recycling: Privacy-Preserving Synthetic Data Sharing [5.0243930429558885]
フェデレーション・ナレッジ・リサイクリング(FedKR)は、組織間のコラボレーションを促進するために、局所的に生成された合成データを利用するクロスサイロ・フェデレーション・ラーニング・アプローチである。
FedKRは、高度なデータ生成技術と動的な集約プロセスを組み合わせることで、既存の方法よりも高いセキュリティを提供する。
論文 参考訳(メタデータ) (2024-07-30T13:56:26Z) - Promoting Data and Model Privacy in Federated Learning through Quantized LoRA [41.81020951061438]
トレーニング中にモデルのパラメータの量子化されたバージョンを配布するだけでよい方法を紹介します。
我々は、この量子化戦略を、人気かつパラメータ効率の良い微調整法であるLoRAと組み合わせて、フェデレート学習における通信コストを大幅に削減する。
提案したフレームワークはtextscFedLPP と呼ばれ、フェデレートされた学習コンテキストにおけるデータとモデルのプライバシの両立を実現している。
論文 参考訳(メタデータ) (2024-06-16T15:23:07Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
我々は、訓練されたモデル間で知識を共有することができる、完全に分散化されたアプローチを提案する。
生徒は、合成された入力データを通じて教師の出力を訓練する。
その結果,教師が学習した未学習学生モデルが,教師と同等のF1スコアに達することがわかった。
論文 参考訳(メタデータ) (2021-02-01T14:38:54Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
フェデレーション学習はコミュニケーション効率とプライバシ保護のトレーニングプロセスを提供する。
平均損失関数をナイーブに最小化する標準的なフェデレーション学習技術は、データの破損に弱い。
破損したデータソースに対して堅牢性を提供するために、自動重み付けロバストフェデレーテッドラーニング(arfl)を提案します。
論文 参考訳(メタデータ) (2021-01-14T21:54:55Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。