The Relativity of Causal Knowledge
- URL: http://arxiv.org/abs/2503.11718v1
- Date: Thu, 13 Mar 2025 16:24:48 GMT
- Title: The Relativity of Causal Knowledge
- Authors: Gabriele D'Acunto, Claudio Battiloro,
- Abstract summary: Recent advances in artificial intelligence reveal the limits of purely predictive systems and call for a shift toward causal and collaborative reasoning.<n>We introduce the relativity of causal knowledge, which posits structural causal models (SCMs) are inherently imperfect, subjective representations embedded within networks of relationships.
- Score: 4.051523221722475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in artificial intelligence reveal the limits of purely predictive systems and call for a shift toward causal and collaborative reasoning. Drawing inspiration from the revolution of Grothendieck in mathematics, we introduce the relativity of causal knowledge, which posits structural causal models (SCMs) are inherently imperfect, subjective representations embedded within networks of relationships. By leveraging category theory, we arrange SCMs into a functor category and show that their observational and interventional probability measures naturally form convex structures. This result allows us to encode non-intervened SCMs with convex spaces of probability measures. Next, using sheaf theory, we construct the network sheaf and cosheaf of causal knowledge. These structures enable the transfer of causal knowledge across the network while incorporating interventional consistency and the perspective of the subjects, ultimately leading to the formal, mathematical definition of relative causal knowledge.
Related papers
- When Counterfactual Reasoning Fails: Chaos and Real-World Complexity [1.9223856107206057]
We investigate the limitations of counterfactual reasoning within the framework of Structural Causal Models.
We find that realistic assumptions, such as low degrees of model uncertainty or chaotic dynamics, can result in counterintuitive outcomes.
This work urges caution when applying counterfactual reasoning in settings characterized by chaos and uncertainty.
arXiv Detail & Related papers (2025-03-31T08:14:51Z) - Algorithmic causal structure emerging through compression [53.52699766206808]
We explore the relationship between causality, symmetry, and compression.<n>We build on and generalize the known connection between learning and compression to a setting where causal models are not identifiable.<n>We define algorithmic causality as an alternative definition of causality when traditional assumptions for causal identifiability do not hold.
arXiv Detail & Related papers (2025-02-06T16:50:57Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.<n>We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.<n>We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
Causal emergence theory employs measures of causality to quantify emergence.
Two key problems are addressed: quantifying causal emergence and identifying it in data.
We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning.
arXiv Detail & Related papers (2023-12-28T04:20:46Z) - Targeted Reduction of Causal Models [55.11778726095353]
Causal Representation Learning offers a promising avenue to uncover interpretable causal patterns in simulations.
We introduce Targeted Causal Reduction (TCR), a method for condensing complex intervenable models into a concise set of causal factors.
Its ability to generate interpretable high-level explanations from complex models is demonstrated on toy and mechanical systems.
arXiv Detail & Related papers (2023-11-30T15:46:22Z) - Causal reasoning in typical computer vision tasks [11.95181390654463]
Causal theory models the intrinsic causal structure unaffected by data bias and is effective in avoiding spurious correlations.
This paper aims to comprehensively review the existing causal methods in typical vision and vision-language tasks such as semantic segmentation, object detection, and image captioning.
Future roadmaps are also proposed, including facilitating the development of causal theory and its application in other complex scenes and systems.
arXiv Detail & Related papers (2023-07-26T07:01:57Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models.
We develop a conversation cognitive model ( CCM) that explains how each utterance receives and activates channels of information.
By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds.
arXiv Detail & Related papers (2023-05-28T13:54:09Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASON consists of Topological Causal Discovery and Individual Causal Discovery.
The Topological Causal Discovery component aims to model the fault propagation in order to trace back to the root causes.
The Individual Causal Discovery component focuses on capturing abrupt change patterns of a single system entity.
arXiv Detail & Related papers (2023-02-03T20:17:45Z) - Relating Graph Neural Networks to Structural Causal Models [17.276657786213015]
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations.
We present a theoretical analysis that establishes a novel connection between GNN and SCM.
We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification.
arXiv Detail & Related papers (2021-09-09T11:16:31Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.