Targeted Reduction of Causal Models
- URL: http://arxiv.org/abs/2311.18639v2
- Date: Mon, 3 Jun 2024 13:45:44 GMT
- Title: Targeted Reduction of Causal Models
- Authors: Armin Kekić, Bernhard Schölkopf, Michel Besserve,
- Abstract summary: Causal Representation Learning offers a promising avenue to uncover interpretable causal patterns in simulations.
We introduce Targeted Causal Reduction (TCR), a method for condensing complex intervenable models into a concise set of causal factors.
Its ability to generate interpretable high-level explanations from complex models is demonstrated on toy and mechanical systems.
- Score: 55.11778726095353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Why does a phenomenon occur? Addressing this question is central to most scientific inquiries and often relies on simulations of scientific models. As models become more intricate, deciphering the causes behind phenomena in high-dimensional spaces of interconnected variables becomes increasingly challenging. Causal Representation Learning (CRL) offers a promising avenue to uncover interpretable causal patterns within these simulations through an interventional lens. However, developing general CRL frameworks suitable for practical applications remains an open challenge. We introduce Targeted Causal Reduction (TCR), a method for condensing complex intervenable models into a concise set of causal factors that explain a specific target phenomenon. We propose an information theoretic objective to learn TCR from interventional data of simulations, establish identifiability for continuous variables under shift interventions and present a practical algorithm for learning TCRs. Its ability to generate interpretable high-level explanations from complex models is demonstrated on toy and mechanical systems, illustrating its potential to assist scientists in the study of complex phenomena in a broad range of disciplines.
Related papers
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.
In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.
The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment [10.814585613336778]
Causal representation learning aims to combine the core strengths of machine learning and causality.
This thesis investigates what is possible for CRL without direct supervision, and thus contributes to its theoretical foundations.
arXiv Detail & Related papers (2024-06-19T09:14:40Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models.
We develop a conversation cognitive model ( CCM) that explains how each utterance receives and activates channels of information.
By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds.
arXiv Detail & Related papers (2023-05-28T13:54:09Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Triplet is a causal representation learning benchmark featuring visually more complex scenes.
We show that models built with the knowledge of disentangled or object-centric representations significantly outperform their distributed counterparts.
arXiv Detail & Related papers (2023-01-12T17:43:38Z) - Quantify the Causes of Causal Emergence: Critical Conditions of
Uncertainty and Asymmetry in Causal Structure [0.5372002358734439]
Investigation of causal relationships based on statistical and informational theories have posed an interesting and valuable challenge to large-scale models.
This paper introduces a framework for assessing numerical conditions of Causal Emergence as theoretical constraints of its occurrence.
arXiv Detail & Related papers (2022-12-03T06:35:54Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.