Physical Principles of Quantum Biology
- URL: http://arxiv.org/abs/2503.11747v1
- Date: Fri, 14 Mar 2025 17:12:25 GMT
- Title: Physical Principles of Quantum Biology
- Authors: Nathan S. Babcock, Brandy N. Babcock,
- Abstract summary: It approaches quantum biology from a physical perspective.<n>Written for academics, biological science researchers, physicists, biochemists, medical technologists, and students of quantum mechanics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This technical monograph provides a comprehensive overview of the field of quantum biology. It approaches quantum biology from a physical perspective with core quantum mechanical concepts presented foremost to provide a theoretical foundation for the field. An extensive body of research is covered to clarify the significance of quantum biology as a scientific field, outlining the field's long-standing importance in the historical development of quantum theory. This lays the essential groundwork to enable further advances in nanomedicine and biotechnology. Written for academics, biological science researchers, physicists, biochemists, medical technologists, and students of quantum mechanics, this text brings clarity to fundamental advances being made in the emerging science of quantum biology.
Related papers
- Quantum Information meets High-Energy Physics: Input to the update of the European Strategy for Particle Physics [46.35100548313364]
Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups.
The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown, and has gathered the attention of the scientific community.
arXiv Detail & Related papers (2025-03-31T18:00:01Z) - Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications [0.0]
Physics is living an era of unprecedented cross-fertilization among the different areas of science.
We discuss the manifold impact that ultracold-atom quantum technologies can have in fundamental and applied science.
We illustrate how the engineering of table-top experiments with atom technologies is engendering applications.
arXiv Detail & Related papers (2024-05-10T16:52:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Conceptual diagrams in Quantum Mechanics [0.0]
The study of Quantum Mechanics is usually presented, even to future scientists, within the only framework developed by Bohr and the Copenhagen researchers, known as the Copenhagen interpretation.
We present a set of Conceptual Diagrams elaborated and designed to expose and facilitate the visualization of elements intervening in any interpretation of Quantum Mechanics.
arXiv Detail & Related papers (2023-03-25T00:15:53Z) - Materials and devices for fundamental quantum science and quantum
technologies [41.6785981575436]
We focus on advanced superconducting materials, van der Waals materials, and moir'e quantum matter.
We highlight a wealth of potential applications, ranging from high-energy experimental and theoretical physics to quantum materials science and energy storage.
arXiv Detail & Related papers (2022-01-23T13:33:19Z) - Quantum Biotechnology [0.0]
Quantum technologies leverage the laws of quantum physics to achieve performance advantages.
They have been proposed to have a range of applications in biological science.
This review aims to provide an overview of this emerging field of quantum biotechnology.
arXiv Detail & Related papers (2021-11-03T05:09:06Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Quantum-like modeling in biology with open quantum systems and
instruments [0.0]
We present the novel approach to mathematical modeling of information processes in biosystems.
It is based on quantum information representation of biosystem's state and modeling its dynamics in the framework of theory of open quantum systems.
arXiv Detail & Related papers (2020-10-27T18:38:16Z) - Introductory review to quantum information retrieval [77.34726150561087]
Quantum formalism is widely used outside of quantum physics, in particular, in cognition, psychology, decision making, information processing, especially information retrieval.
This paper is not aimed to present a complete review on the state of art in quantum information retrieval.
arXiv Detail & Related papers (2020-08-05T15:23:42Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.