論文の概要: Trust Under Siege: Label Spoofing Attacks against Machine Learning for Android Malware Detection
- arxiv url: http://arxiv.org/abs/2503.11841v1
- Date: Fri, 14 Mar 2025 20:05:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:57.535642
- Title: Trust Under Siege: Label Spoofing Attacks against Machine Learning for Android Malware Detection
- Title(参考訳): Androidのマルウェア検出に機械学習を悪用するラベルが盗まれる
- Authors: Tianwei Lan, Luca Demetrio, Farid Nait-Abdesselam, Yufei Han, Simone Aonzo,
- Abstract要約: これは、最小限で検出不能な悪意のあるパターンを埋め込むことによって、クラウドソースデータセットを汚染する新たな脅威である。
我々は、現実的なデータソースを汚染する手法であるAndroVenomを開発することで、このシナリオを実証する。
実験により、最先端の機能抽出器はそのようなインジェクションをフィルタリングできないだけでなく、さまざまなMLモデルがDenial of Serviceを経験していることが示されている。
- 参考スコア(独自算出の注目度): 11.53708766953391
- License:
- Abstract: Machine learning (ML) malware detectors rely heavily on crowd-sourced AntiVirus (AV) labels, with platforms like VirusTotal serving as a trusted source of malware annotations. But what if attackers could manipulate these labels to classify benign software as malicious? We introduce label spoofing attacks, a new threat that contaminates crowd-sourced datasets by embedding minimal and undetectable malicious patterns into benign samples. These patterns coerce AV engines into misclassifying legitimate files as harmful, enabling poisoning attacks against ML-based malware classifiers trained on those data. We demonstrate this scenario by developing AndroVenom, a methodology for polluting realistic data sources, causing consequent poisoning attacks against ML malware detectors. Experiments show that not only state-of-the-art feature extractors are unable to filter such injection, but also various ML models experience Denial of Service already with 1% poisoned samples. Additionally, attackers can flip decisions of specific unaltered benign samples by modifying only 0.015% of the training data, threatening their reputation and market share and being unable to be stopped by anomaly detectors on training data. We conclude our manuscript by raising the alarm on the trustworthiness of the training process based on AV annotations, requiring further investigation on how to produce proper labels for ML malware detectors.
- Abstract(参考訳): 機械学習(ML)マルウェア検出器は、クラウドソースされたAntVirus(AV)ラベルに大きく依存しており、VrusTotalのようなプラットフォームはマルウェアアノテーションの信頼できるソースとして機能している。
しかし、もし攻撃者が悪質なソフトウェアを分類するためにこれらのラベルを操作できたらどうだろう?
これは、最小限で検出不能な悪意あるパターンを良質なサンプルに埋め込むことによって、クラウドソースデータセットを汚染する新たな脅威である。
これらのパターンは、AIVエンジンを不正に正規ファイルに分類し、それらのデータに基づいて訓練されたMLベースのマルウェア分類器に対する有害な攻撃を可能にする。
このシナリオは、リアルなデータソースを汚染する手法であるAndroVenomを開発し、MLマルウェア検出装置に対する連続的な毒攻撃を引き起こすことによって実証される。
実験によると、最先端の機能抽出器はそのような注入をフィルタリングできないだけでなく、さまざまなMLモデルでもすでに1%の有毒サンプルでDenial of Serviceを経験している。
さらに、攻撃者はトレーニングデータの0.015%だけを変更して、評判と市場シェアを脅かし、トレーニングデータ上の異常検知器によって停止できないことで、特定の修正されていない良性サンプルの判定を無効にすることができる。
AVアノテーションに基づくトレーニングプロセスの信頼性に関するアラームを提起し,MLマルウェア検出装置の適切なラベル作成方法に関するさらなる調査を要した。
関連論文リスト
- Erasing Self-Supervised Learning Backdoor by Cluster Activation Masking [65.44477004525231]
研究者は最近、自己監視学習(SSL)がバックドア攻撃に脆弱であることを発見した。
本稿では,クラスタアクティベーションマスキングによるSSLバックドアの消去を提案し,新しいPoisonCAM法を提案する。
ImageNet-100の最先端手法の3%と比較して,バックドアトリガ検出の精度は96%であった。
論文 参考訳(メタデータ) (2023-12-13T08:01:15Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - A two-steps approach to improve the performance of Android malware
detectors [4.440024971751226]
マルウェア検知器の性能を高めるための教師付き表現学習法であるGUIDED ReTRAINingを提案する。
265k以上のマルウェアと良性アプリを用いて,最先端の4つのAndroidマルウェア検出手法を検証した。
本手法は汎用的であり,二項分類タスクにおける分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2022-05-17T12:04:17Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroidは、現実のシナリオでブラックボックスのAndroidマルウェア検出を効果的に回避するために設計された、問題空間の敵攻撃である。
EvadeDroidは, DREBIN, Sec-SVM, ADE-MA, MaMaDroid, Opcode-SVMに対して, 1-9クエリで80%-95%の回避率を達成した。
論文 参考訳(メタデータ) (2021-10-07T09:39:40Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Maat: Automatically Analyzing VirusTotal for Accurate Labeling and
Effective Malware Detection [71.84087757644708]
マルウェア分析と検出の研究コミュニティは、約60台のスキャナーのスキャン結果に基づいてAndroidアプリをラベル付けするために、オンラインプラットフォームVirusTotalに依存している。
VirusTotalから取得したスキャン結果を最もよく解釈する方法の基準はありません。
機械学習(ML)ベースのラベリングスキームを自動生成することで,標準化と持続可能性というこれらの問題に対処する手法であるMaatを実装した。
論文 参考訳(メタデータ) (2020-07-01T14:15:03Z) - Explanation-Guided Backdoor Poisoning Attacks Against Malware
Classifiers [12.78844634194129]
機械学習ベースのマルウェア分類のためのトレーニングパイプラインは、しばしばクラウドソースの脅威フィードに依存する。
本稿では、攻撃者がサンプルラベリングプロセスを制御できない「クリーンラベル」攻撃に挑戦することに焦点を当てる。
本稿では,効率的なバックドアトリガを作成するために,説明可能な機械学習の手法を用いて,関連する特徴や値の選択を誘導する手法を提案する。
論文 参考訳(メタデータ) (2020-03-02T17:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。