Generating a Biometrically Unique and Realistic Iris Database
- URL: http://arxiv.org/abs/2503.11930v1
- Date: Sat, 15 Mar 2025 00:28:25 GMT
- Title: Generating a Biometrically Unique and Realistic Iris Database
- Authors: Jingxuan Zhang, Robert J. Hart, Ziqian Bi, Shiaofen Fang, Susan Walsh,
- Abstract summary: We show how to create a database of realistic, biometrically unidentifiable colored iris images by training a diffusion model within an open-source diffusion framework.<n>We highlight the fact that the utility of diffusion networks to achieve these criteria with relative ease, warrants additional research in its use within the context of iris database generation and presentation attack security.
- Score: 2.8486259504314426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of the iris as a biometric identifier has increased dramatically over the last 30 years, prompting privacy and security concerns about the use of iris images in research. It can be difficult to acquire iris image databases due to ethical concerns, and this can be a barrier for those performing biometrics research. In this paper, we describe and show how to create a database of realistic, biometrically unidentifiable colored iris images by training a diffusion model within an open-source diffusion framework. Not only were we able to verify that our model is capable of creating iris textures that are biometrically unique from the training data, but we were also able to verify that our model output creates a full distribution of realistic iris pigmentations. We highlight the fact that the utility of diffusion networks to achieve these criteria with relative ease, warrants additional research in its use within the context of iris database generation and presentation attack security.
Related papers
- Iris Style Transfer: Enhancing Iris Recognition with Style Features and Privacy Preservation through Neural Style Transfer [44.44776028287441]
Iris texture is widely regarded as a gold standard biometric modality for authentication and identification.<n>We propose using neural style transfer to mask identifiable iris style features.<n>This work opens new avenues for iris-oriented, secure, and privacy-aware biometric systems.
arXiv Detail & Related papers (2025-03-06T18:55:21Z) - Synthesizing Iris Images using Generative Adversarial Networks: Survey and Comparative Analysis [11.5164036021499]
We present a review of state-of-the-art GAN-based synthetic iris image generation techniques.
We first survey the various methods that have been used for synthetic iris generation and specifically consider generators based on StyleGAN, RaSGAN, CIT-GAN, iWarpGAN, StarGAN, etc.
arXiv Detail & Related papers (2024-04-26T01:45:58Z) - EyePreserve: Identity-Preserving Iris Synthesis [8.973296574093506]
This paper presents the first method of fully data-driven, identity-preserving, pupil size-varying synthesis of iris images.
Two immediate applications of the proposed approach are: (a) synthesis of, or enhancement of the existing biometric datasets for iris recognition, and (b) helping forensic human experts in examining iris image pairs with significant differences in pupil dilation.
arXiv Detail & Related papers (2023-12-19T10:29:29Z) - Periocular biometrics: databases, algorithms and directions [69.35569554213679]
Periocular biometrics has been established as an independent modality due to concerns on the performance of iris or face systems in uncontrolled conditions.
This paper presents a review of the state of the art in periocular biometric research.
arXiv Detail & Related papers (2023-07-26T11:14:36Z) - Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation [0.0]
Modern approaches to iris recognition utilize deep learning to segment the valid portion of the iris from the rest of the eye.
This paper aims to improve the accuracy of iris semantic segmentation systems by introducing a novel data augmentation technique.
arXiv Detail & Related papers (2022-12-24T13:31:56Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
Single image super-resolution techniques are emerging, especially with the use of convolutional neural networks (CNNs)
In this work, the authors explore single image super-resolution using CNNs for iris recognition.
They validate their approach on a database of 1.872 near infrared iris images and on a mobile phone image database.
arXiv Detail & Related papers (2022-10-24T11:19:18Z) - Can Shadows Reveal Biometric Information? [48.3561395627331]
We show that the biometric information leakage from shadows can be sufficient for reliable identity inference under representative scenarios.
We then develop a learning-based method that demonstrates this phenomenon in real settings.
arXiv Detail & Related papers (2022-09-21T02:36:32Z) - Direct attacks using fake images in iris verification [59.68607707427014]
A database of fake iris images has been created from real iris of the BioSec baseline database.
We show that the system is vulnerable to direct attacks, pointing out the importance of having countermeasures.
arXiv Detail & Related papers (2021-10-30T05:01:06Z) - Toward Accurate and Reliable Iris Segmentation Using Uncertainty
Learning [96.72850130126294]
We propose an Iris U-transformer (IrisUsformer) for accurate and reliable iris segmentation.
For better accuracy, we elaborately design IrisUsformer by adopting position-sensitive operation and re-packaging transformer block.
We show that IrisUsformer achieves better segmentation accuracy using 35% MACs of the SOTA IrisParseNet.
arXiv Detail & Related papers (2021-10-20T01:37:19Z) - Segmentation-Aware and Adaptive Iris Recognition [24.125681602124477]
The quality of iris images acquired at-a-distance or under less constrained imaging environments is known to degrade the iris matching accuracy.
The periocular information is inherently embedded in such iris images and can be exploited to assist in the iris recognition under such non-ideal scenarios.
This paper presents such a segmentation-assisted adaptive framework for more accurate less-constrained iris recognition.
arXiv Detail & Related papers (2019-12-31T04:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.