SagaLLM: Context Management, Validation, and Transaction Guarantees for Multi-Agent LLM Planning
- URL: http://arxiv.org/abs/2503.11951v2
- Date: Tue, 18 Mar 2025 05:00:47 GMT
- Title: SagaLLM: Context Management, Validation, and Transaction Guarantees for Multi-Agent LLM Planning
- Authors: Edward Y. Chang, Longling Geng,
- Abstract summary: SagaLLM is a structured multi-agent framework that addresses four fundamental limitations in current LLM approaches.<n>By implementing specialized context management agents and validation protocols, SagaLLM preserves critical constraints and state information throughout complex planning processes.
- Score: 2.1331883629523634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent LLM-based agent frameworks have demonstrated impressive capabilities in task delegation and workflow orchestration, but face significant challenges in maintaining context awareness and ensuring planning consistency. This paper presents SagaLLM, a structured multi-agent framework that addresses four fundamental limitations in current LLM approaches: inadequate self-validation, context narrowing, lacking transaction properties, and insufficient inter-agent coordination. By implementing specialized context management agents and validation protocols, SagaLLM preserves critical constraints and state information throughout complex planning processes, enabling robust and consistent decision-making even during disruptions. We evaluate our approach using selected problems from the REALM benchmark, focusing on sequential and reactive planning scenarios that challenge both context retention and adaptive reasoning. Our experiments with state-of-the-art LLMs, Claude 3.7, DeepSeek R1, GPT-4o, and GPT-o1, demonstrate that while these models exhibit impressive reasoning capabilities, they struggle with maintaining global constraint awareness during complex planning tasks, particularly when adapting to unexpected changes. In contrast, the distributed cognitive architecture of SagaLLM shows significant improvements in planning consistency, constraint enforcement, and adaptation to disruptions in various scenarios.
Related papers
- Federated Learning-Enabled Hybrid Language Models for Communication-Efficient Token Transmission [87.68447072141402]
Hybrid Language Models (HLMs) combine the low-latency efficiency of Small Language Models (SLMs) on edge devices with the high accuracy of Large Language Models (LLMs) on centralized servers.<n>We propose FedHLM, a communication-efficient HLM framework that integrates uncertainty-aware inference with Federated Learning (FL)
arXiv Detail & Related papers (2025-06-30T02:56:11Z) - EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models [65.48902212293903]
We present the Extremely Complex Instruction Following Benchmark (EIFBENCH) for evaluating large language models (LLMs)<n>EIFBENCH includes multi-task scenarios that enable comprehensive assessment across diverse task types concurrently.<n>We also propose the Segment Policy Optimization (SegPO) algorithm to enhance the LLM's ability to accurately fulfill multi-task workflow.
arXiv Detail & Related papers (2025-06-10T02:39:55Z) - ALAS: A Stateful Multi-LLM Agent Framework for Disruption-Aware Planning [2.1331883629523634]
We present Adaptive LLM Agent System (ALAS), a framework that tackles four fundamental LLM deficits.<n>ALAS decomposes each plan into role-specialized agents, equips them with automatic state tracking, and coordinates them through a lightweight protocol.<n>On real-world, large-scale job-shop scheduling benchmarks, ALAS sets new best results for static sequential planning and excels in dynamic reactive scenarios with unexpected disruptions.
arXiv Detail & Related papers (2025-05-18T17:27:08Z) - A Weighted Byzantine Fault Tolerance Consensus Driven Trusted Multiple Large Language Models Network [53.37983409425452]
Large Language Models (LLMs) have achieved remarkable success across a wide range of applications.<n>Recently, collaborative frameworks such as the Multi-LLM Network (MultiLLMN) have been introduced.<n>We propose a novel Trusted MultiLLMN framework driven by a weighted Byzantine Fault Tolerance (WBFT) blockchain consensus mechanism.
arXiv Detail & Related papers (2025-05-08T10:04:41Z) - Hierarchical Planning for Complex Tasks with Knowledge Graph-RAG and Symbolic Verification [5.727096041675994]
Large Language Models (LLMs) have shown promise as robotic planners but often struggle with long-horizon and complex tasks.
We propose a neuro-symbolic approach that enhances LLMs-based planners with Knowledge Graph-based RAG for hierarchical plan generation.
arXiv Detail & Related papers (2025-04-06T18:36:30Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Parallelized Planning-Acting for Efficient LLM-based Multi-Agent Systems [31.894636711684523]
We propose a novel parallelized planning-acting framework for Multi-Agent Systems.
The proposed framework features a dual-thread architecture with interruptible execution to enable concurrent planning and acting.
arXiv Detail & Related papers (2025-03-05T13:53:10Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - MACI: Multi-Agent Collaborative Intelligence for Adaptive Reasoning and Temporal Planning [2.5200794639628032]
Multi-Agent Collaborative Intelligence (MACI)<n>A framework comprising three key components: 1) a meta-planner (MP) that identifies, formulates, and refines all roles and constraints of a task while generating a dependency graph, with common-sense augmentation to ensure realistic and practical constraints; 2) a collection of agents to facilitate planning and address task-specific requirements; and 3) a run-time monitor that manages plan adjustments as needed.
arXiv Detail & Related papers (2025-01-28T03:57:22Z) - PoAct: Policy and Action Dual-Control Agent for Generalized Applications [18.342339678035685]
This paper proposes Policy and Action Dual-Control Agent (PoAct) for generalized applications.<n>PoAct aims to achieve higher-quality code actions and more accurate reasoning paths by dynamically switching reasoning policies and modifying the action space.
arXiv Detail & Related papers (2025-01-13T04:28:40Z) - A Simple and Fast Way to Handle Semantic Errors in Transactions [11.584869171478609]
This paper focuses on handling database transactions created by large language models (LLMs)<n>We propose a novel framework based on Invariant Satisfaction (I-Confluence), which ensures consistency by identifying and coordinating dependencies between long-lived transactions and new transactions.
arXiv Detail & Related papers (2024-12-17T02:47:18Z) - Ontology-driven Prompt Tuning for LLM-based Task and Motion Planning [0.20940572815908076]
Task and Motion Planning (TAMP) approaches combine high-level symbolic plan with low-level motion planning.
LLMs are transforming task planning by offering natural language as an intuitive and flexible way to describe tasks.
This work proposes a novel prompt-tuning framework that employs knowledge-based reasoning to refine and expand user prompts.
arXiv Detail & Related papers (2024-12-10T13:18:45Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - MaCTG: Multi-Agent Collaborative Thought Graph for Automatic Programming [10.461509044478278]
MaCTG (MultiAgent Collaborative Thought Graph) is a novel multi-agent framework that employs a dynamic graph structure.<n>It autonomously assigns agent roles based on programming requirements, dynamically refines task distribution, and systematically verifies and integrates project-level code.<n>MaCTG significantly reduced operational costs by 89.09% compared to existing multi-agent frameworks.
arXiv Detail & Related papers (2024-10-25T01:52:15Z) - CoBa: Convergence Balancer for Multitask Finetuning of Large Language Models [23.50705152648991]
Multi-task learning (MTL) benefits the fine-tuning of large language models (LLMs)
Existing MTL strategies for LLMs often fall short by either being computationally intensive or failing to ensure simultaneous task convergence.
This paper presents CoBa, a new MTL approach designed to effectively manage task convergence balance with minimal computational overhead.
arXiv Detail & Related papers (2024-10-09T10:20:32Z) - Deliberate Reasoning in Language Models as Structure-Aware Planning with an Accurate World Model [14.480267340831542]
Structure-aware Planning with an Accurate World Model (SWAP)<n>SWAP integrates structured knowledge representation with learned planning.<n>We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks.
arXiv Detail & Related papers (2024-10-04T04:23:36Z) - On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
We evaluate the planning capabilities of OpenAI's o1 models across a variety of benchmark tasks.
Our results reveal that o1-preview outperforms GPT-4 in adhering to task constraints.
arXiv Detail & Related papers (2024-09-30T03:58:43Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Formal-LLM: Integrating Formal Language and Natural Language for Controllable LLM-based Agents [39.53593677934238]
Large Language Models (LLMs) enable AI Agents to automatically generate and execute multi-step plans to solve complex tasks.
However, current LLM-based agents frequently generate invalid or non-executable plans.
This paper proposes a novel "Formal-LLM" framework for LLM-based agents by integrating the expressiveness of natural language and the precision of formal language.
arXiv Detail & Related papers (2024-02-01T17:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.