Revisiting Gradient Descent: A Dual-Weight Method for Improved Learning
- URL: http://arxiv.org/abs/2503.11965v2
- Date: Tue, 18 Mar 2025 03:34:27 GMT
- Title: Revisiting Gradient Descent: A Dual-Weight Method for Improved Learning
- Authors: Xi Wang,
- Abstract summary: We introduce a novel framework for learning in neural networks by decomposing each neuron's weight vector into two distinct parts.<n>We show that this decomposition enhances generalization and resists overfitting, especially when training data are sparse or noisy.
- Score: 4.751362812627724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel framework for learning in neural networks by decomposing each neuron's weight vector into two distinct parts, $W_1$ and $W_2$, thereby modeling contrastive information directly at the neuron level. Traditional gradient descent stores both positive (target) and negative (non-target) feature information in a single weight vector, often obscuring fine-grained distinctions. Our approach, by contrast, maintains separate updates for target and non-target features, ultimately forming a single effective weight $W = W_1 - W_2$ that is more robust to noise and class imbalance. Experimental results on both regression (California Housing, Wine Quality) and classification (MNIST, Fashion-MNIST, CIFAR-10) tasks suggest that this decomposition enhances generalization and resists overfitting, especially when training data are sparse or noisy. Crucially, the inference complexity remains the same as in the standard $WX + \text{bias}$ setup, offering a practical solution for improved learning without additional inference-time overhead.
Related papers
- What to Do When Your Discrete Optimization Is the Size of a Neural
Network? [24.546550334179486]
Machine learning applications using neural networks involve solving discrete optimization problems.
classical approaches used in discrete settings do not scale well to large neural networks.
We take continuation path (CP) methods to represent using purely the former and Monte Carlo (MC) methods to represent the latter.
arXiv Detail & Related papers (2024-02-15T21:57:43Z) - Improved Generalization of Weight Space Networks via Augmentations [53.87011906358727]
Learning in deep weight spaces (DWS) is an emerging research direction, with applications to 2D and 3D neural fields (INRs, NeRFs)
We empirically analyze the reasons for this overfitting and find that a key reason is the lack of diversity in DWS datasets.
To address this, we explore strategies for data augmentation in weight spaces and propose a MixUp method adapted for weight spaces.
arXiv Detail & Related papers (2024-02-06T15:34:44Z) - Provable Identifiability of Two-Layer ReLU Neural Networks via LASSO
Regularization [15.517787031620864]
The territory of LASSO is extended to two-layer ReLU neural networks, a fashionable and powerful nonlinear regression model.
We show that the LASSO estimator can stably reconstruct the neural network and identify $mathcalSstar$ when the number of samples scales logarithmically.
Our theory lies in an extended Restricted Isometry Property (RIP)-based analysis framework for two-layer ReLU neural networks.
arXiv Detail & Related papers (2023-05-07T13:05:09Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
We prove convergence of depth 2 neural networks, trained via gradient descent, to a global minimum.
Our model has the following features: regression with quadratic loss function, fully connected feedforward architecture, RelU activations, Gaussian data instances, adversarial labels.
They strongly suggest that, at least in our model, the convergence phenomenon extends well beyond the NTK regime''
arXiv Detail & Related papers (2022-12-05T14:47:52Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - Binarizing by Classification: Is soft function really necessary? [4.329951775163721]
We propose to tackle network binarization as a binary classification problem.
We also take binarization as a lightweighting approach for pose estimation models.
The proposed method enables binary networks to achieve a mAP of up to $60.6$ for the first time.
arXiv Detail & Related papers (2022-05-16T02:47:41Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Regularization Matters: A Nonparametric Perspective on Overparametrized
Neural Network [20.132432350255087]
Overparametrized neural networks trained by tangent descent (GD) can provably overfit any training data.
This paper studies how well overparametrized neural networks can recover the true target function in the presence of random noises.
arXiv Detail & Related papers (2020-07-06T01:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.