Hierarchical Reinforcement Learning for Safe Mapless Navigation with Congestion Estimation
- URL: http://arxiv.org/abs/2503.12036v1
- Date: Sat, 15 Mar 2025 08:03:50 GMT
- Title: Hierarchical Reinforcement Learning for Safe Mapless Navigation with Congestion Estimation
- Authors: Jianqi Gao, Xizheng Pang, Qi Liu, Yanjie Li,
- Abstract summary: This paper introduces a safe mapless navigation framework utilizing hierarchical reinforcement learning (HRL) to enhance navigation through such areas.<n>The findings demonstrate that our HRL-based navigation framework excels in both static and dynamic scenarios.<n>We implement the HRL-based navigation framework on a TurtleBot3 robot for physical validation experiments.
- Score: 7.339743259039457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning-based mapless navigation holds significant potential. However, it faces challenges in indoor environments with local minima area. This paper introduces a safe mapless navigation framework utilizing hierarchical reinforcement learning (HRL) to enhance navigation through such areas. The high-level policy creates a sub-goal to direct the navigation process. Notably, we have developed a sub-goal update mechanism that considers environment congestion, efficiently avoiding the entrapment of the robot in local minimum areas. The low-level motion planning policy, trained through safe reinforcement learning, outputs real-time control instructions based on acquired sub-goal. Specifically, to enhance the robot's environmental perception, we introduce a new obstacle encoding method that evaluates the impact of obstacles on the robot's motion planning. To validate the performance of our HRL-based navigation framework, we conduct simulations in office, home, and restaurant environments. The findings demonstrate that our HRL-based navigation framework excels in both static and dynamic scenarios. Finally, we implement the HRL-based navigation framework on a TurtleBot3 robot for physical validation experiments, which exhibits its strong generalization capabilities.
Related papers
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.
Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.
These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
Reinforcement learning (RL) is a promising approach for robotic navigation, allowing robots to learn through trial and error.<n>Real-world robotic tasks often suffer from sparse rewards, leading to inefficient exploration and suboptimal policies.<n>We introduce Confidence-Controlled Exploration (CCE), a novel method that improves sample efficiency in RL-based robotic navigation without modifying the reward function.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Robot path planning using deep reinforcement learning [0.0]
Reinforcement learning methods offer an alternative to map-free navigation tasks.
Deep reinforcement learning agents are implemented for both the obstacle avoidance and the goal-oriented navigation task.
An analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.
arXiv Detail & Related papers (2023-02-17T20:08:59Z) - Generalization in Deep Reinforcement Learning for Robotic Navigation by
Reward Shaping [0.1588748438612071]
We study the application of DRL algorithms in the context of local navigation problems.
Collision avoidance policies based on DRL present some advantages, but they are quite susceptible to local minima.
We propose a novel reward function that incorporates map information gained in the training stage, increasing the agent's capacity to deliberate about the best course of action.
arXiv Detail & Related papers (2022-09-28T17:34:48Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Rule-Based Reinforcement Learning for Efficient Robot Navigation with
Space Reduction [8.279526727422288]
In this paper, we focus on efficient navigation with the reinforcement learning (RL) technique.
We employ a reduction rule to shrink the trajectory, which in turn effectively reduces the redundant exploration space.
Experiments conducted on real robot navigation problems in hex-grid environments demonstrate that RuRL can achieve improved navigation performance.
arXiv Detail & Related papers (2021-04-15T07:40:27Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.