Robust Dataset Distillation by Matching Adversarial Trajectories
- URL: http://arxiv.org/abs/2503.12069v1
- Date: Sat, 15 Mar 2025 10:02:38 GMT
- Title: Robust Dataset Distillation by Matching Adversarial Trajectories
- Authors: Wei Lai, Tianyu Ding, ren dongdong, Lei Wang, Jing Huo, Yang Gao, Wenbin Li,
- Abstract summary: We introduce the task of robust dataset distillation", a novel paradigm that embeds adversarial robustness into synthetic datasets during the distillation process.<n>We propose Matching Adversarial Trajectories (MAT), a method that integrates adversarial training into trajectory-based dataset distillation.<n>MAT incorporates adversarial samples during trajectory generation to obtain robust training trajectories, which are then used to guide the distillation process.
- Score: 21.52323435014135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dataset distillation synthesizes compact datasets that enable models to achieve performance comparable to training on the original large-scale datasets. However, existing distillation methods overlook the robustness of the model, resulting in models that are vulnerable to adversarial attacks when trained on distilled data. To address this limitation, we introduce the task of ``robust dataset distillation", a novel paradigm that embeds adversarial robustness into the synthetic datasets during the distillation process. We propose Matching Adversarial Trajectories (MAT), a method that integrates adversarial training into trajectory-based dataset distillation. MAT incorporates adversarial samples during trajectory generation to obtain robust training trajectories, which are then used to guide the distillation process. As experimentally demonstrated, even through natural training on our distilled dataset, models can achieve enhanced adversarial robustness while maintaining competitive accuracy compared to existing distillation methods. Our work highlights robust dataset distillation as a new and important research direction and provides a strong baseline for future research to bridge the gap between efficient training and adversarial robustness.
Related papers
- Generative Dataset Distillation Based on Self-knowledge Distillation [49.20086587208214]
We present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits.<n>Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data.<n>Our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.
arXiv Detail & Related papers (2025-01-08T00:43:31Z) - Exploring the potential of prototype-based soft-labels data distillation for imbalanced data classification [0.0]
Main goal is to push further the performance of prototype-based soft-labels distillation in terms of classification accuracy.
Experimental studies trace the capability of the method to distill the data, but also the opportunity to act as an augmentation method.
arXiv Detail & Related papers (2024-03-25T19:15:19Z) - Towards Adversarially Robust Dataset Distillation by Curvature Regularization [11.02948004359488]
We study how to embed adversarial robustness in distilled datasets, so that models trained on these datasets maintain the high accuracy and acquire better adversarial robustness.<n>We propose a new method that achieves this goal by incorporating curvature regularization into the distillation process with much less computational overhead than standard adversarial training.
arXiv Detail & Related papers (2024-03-15T06:31:03Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
Development of deep learning models is enabled by the availability of large-scale datasets.
dataset distillation aims to synthesize a compact dataset that retains the essential information from the large original dataset.
We propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance.
arXiv Detail & Related papers (2024-01-29T03:29:39Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
We argue that using just one synthetic subset for distillation will not yield optimal generalization performance.
PDD synthesizes multiple small sets of synthetic images, each conditioned on the previous sets, and trains the model on the cumulative union of these subsets.
Our experiments show that PDD can effectively improve the performance of existing dataset distillation methods by up to 4.3%.
arXiv Detail & Related papers (2023-10-10T20:04:44Z) - Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation [96.92250565207017]
We study the data efficiency and selection for the dataset distillation task.
By re-formulating the dynamics of distillation, we provide insight into the inherent redundancy in the real dataset.
We find the most contributing samples based on their causal effects on the distillation.
arXiv Detail & Related papers (2023-05-28T06:53:41Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
We propose a new formulation that optimize our distilled data to guide networks to a similar state as those trained on real data.
Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data.
Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
arXiv Detail & Related papers (2022-03-22T17:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.