Quantum Simulations of Chemical Reactions: Achieving Accuracy with NISQ Devices
- URL: http://arxiv.org/abs/2503.12084v2
- Date: Tue, 18 Mar 2025 05:52:23 GMT
- Title: Quantum Simulations of Chemical Reactions: Achieving Accuracy with NISQ Devices
- Authors: Maitreyee Sarkar, Lisa Roy, Akash Gutal, Atul Kumart, Manikandan Paranjothy,
- Abstract summary: In the current Noisy Intermediate-Scale Quantum (NISQ) era, the Variational Quantumsolver (VQE) is utilized to simulate molecules using qubits and calculate molecular properties.<n>However, a chemical simulating a reaction to compute the reaction energy using VQE algorithm has not yet reached chemical accuracy relative to the benchmark computational chemistry methods.<n>We propose the definition of different active spaces for studying chemical reactions, incorporating irreducible representations of both the ground and excited states of the molecules.
- Score: 2.481396570929286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is viewed as a promising technology because of its potential for polynomial growth in complexity, in contrast to the exponential growth observed in its classical counterparts. In the current Noisy Intermediate-Scale Quantum (NISQ) era, the Variational Quantum Eigensolver (VQE), a hybrid variational algorithm, is utilized to simulate molecules using qubits and calculate molecular properties. However, simulating a chemical reaction to compute the reaction energy using VQE algorithm has not yet reached chemical accuracy relative to the benchmark computational chemistry methods due to limitations such as the number of qubits, circuit depth, and noise introduced within the model. To address this issue, we propose the definition of different active spaces for studying chemical reactions, incorporating irreducible representations of both the ground and excited states of the molecules. Our results demonstrate that this approach achieves chemical accuracy in predicting the reaction energy for various reactions. For all reactions studied, the difference in reaction energies between conventional computational chemistry methods and the quantum-classical hybrid VQE algorithm is less than 1 kcal/mol. Furthermore, our analysis simplifies the process of selecting active spaces and electrons for each reaction, reducing it to a single optimal combination that ensures the chemical accuracy for each reaction.
Related papers
- Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Quantum Eigenvector Continuation for Chemistry Applications [57.70351255180495]
We show that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states.
In all cases, we show that the PES can be captured using relatively few basis states.
arXiv Detail & Related papers (2023-04-28T19:22:58Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Simulation of chemical reaction dynamics based on quantum computing [1.9441762996158096]
We develop the ab initio molecular dynamics based on quantum computing to simulate reaction dynamics.
We use this approach to calculate Hessian matrix and evaluate resources.
Our results suggest that it is reliable to characterize the molecular structure, property, and reactivity.
arXiv Detail & Related papers (2023-03-15T12:49:10Z) - A modular quantum-classical framework for simulating chemical reaction
pathways accurately [0.0]
We present a modular quantum-classical hybrid framework to accurately simulate chemical reaction pathway.
We demonstrate our framework by accurately tracing the isomerization pathway for small organic molecules.
This framework can now be readily applied to study other 'active' molecules from the pharma and chemical industries.
arXiv Detail & Related papers (2022-10-17T10:41:53Z) - Equation-of-motion variational quantum eigensolver method for computing
molecular excitation energies, ionization potentials, and electron affinities [4.21608910266125]
Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations.
We present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm.
arXiv Detail & Related papers (2022-06-21T16:21:04Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Quantum Chemistry Calculations using Energy Derivatives on Quantum
Computers [0.0]
We present a method to calculate energy derivatives for both ground state and excited state energies.
A low-depth implementation of quantum circuits within the hybridal paradigm is designed.
We showcase the effectiveness of our method by incorporating it in some key quantum chemistry applications.
arXiv Detail & Related papers (2021-06-10T14:57:34Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Considerations for evaluating thermodynamic properties with hybrid
quantum-classical computing work-flows [0.0]
Quantum chemistry applications on quantum computers currently rely heavily on the variational quantum eigensolver algorithm.
We present a summary of the hybrid quantum-classical work-flow to compute thermodynamic properties.
We show that through careful selection of work-flow options, nearly order-of-magnitude increases in accuracy are possible at equivalent computing time.
arXiv Detail & Related papers (2020-03-04T19:32:53Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.