Automating the loop in traffic incident management on highway
- URL: http://arxiv.org/abs/2503.12085v1
- Date: Sat, 15 Mar 2025 11:22:13 GMT
- Title: Automating the loop in traffic incident management on highway
- Authors: Matteo Cercola, Nicola Gatti, Pedro Huertas Leyva, Benedetto Carambia, Simone Formentin,
- Abstract summary: This paper proposes an innovative solution to support and enhance decisions by integrating Large Language Models (LLMs) into a decision-support system for traffic incident management.<n>We introduce two approaches: (1) an LLM + Optimization hybrid that leverages both the flexibility of natural language interaction and the robustness of optimization techniques, and (2) a Full LLM approach that autonomously generates decisions using only LLM capabilities.<n> Experimental results indicate that while both approaches show promise, the LLM + Optimization solution demonstrates superior reliability, making it particularly suited to critical applications.
- Score: 11.001455003481903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective traffic incident management is essential for ensuring safety, minimizing congestion, and reducing response times in emergency situations. Traditional highway incident management relies heavily on radio room operators, who must make rapid, informed decisions in high-stakes environments. This paper proposes an innovative solution to support and enhance these decisions by integrating Large Language Models (LLMs) into a decision-support system for traffic incident management. We introduce two approaches: (1) an LLM + Optimization hybrid that leverages both the flexibility of natural language interaction and the robustness of optimization techniques, and (2) a Full LLM approach that autonomously generates decisions using only LLM capabilities. We tested our solutions using historical event data from Autostrade per l'Italia. Experimental results indicate that while both approaches show promise, the LLM + Optimization solution demonstrates superior reliability, making it particularly suited to critical applications where consistency and accuracy are paramount. This research highlights the potential for LLMs to transform highway incident management by enabling accessible, data-driven decision-making support.
Related papers
- Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
Large Language Models (LLMs) offer transformative potential to address transportation challenges.
This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation.
For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization.
arXiv Detail & Related papers (2025-03-27T11:56:27Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities.
We explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol.
We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target.
arXiv Detail & Related papers (2025-03-10T13:39:09Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles [52.43886862287498]
This paper explores the integration of large language models (LLMs) into energy management.
We propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization.
We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles.
arXiv Detail & Related papers (2025-01-26T14:31:03Z) - Large Language Models (LLMs) as Traffic Control Systems at Urban Intersections: A New Paradigm [5.233512464561313]
This study introduces a novel approach for traffic control systems by using Large Language Models (LLMs) as traffic controllers.
The study utilizes their logical reasoning, scene understanding, and decision-making capabilities to optimize throughput and provide feedback based on traffic conditions in real-time.
arXiv Detail & Related papers (2024-11-16T19:23:52Z) - Hybrid LLM-DDQN based Joint Optimization of V2I Communication and Autonomous Driving [23.676853060080614]
Large language models (LLMs) have received considerable interest recently due to their outstanding reasoning and comprehension capabilities.
This work explores applying LLMs to vehicular networks, aiming to jointly optimize vehicle-to-infrastructure (V2I) communications and autonomous driving (AD) policies.
arXiv Detail & Related papers (2024-10-11T14:30:04Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
This work introduces an innovative approach that integrates Large Language Models into traffic signal control systems.
A hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed.
The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments.
arXiv Detail & Related papers (2024-03-13T08:41:55Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - LCS-TF: Multi-Agent Deep Reinforcement Learning-Based Intelligent
Lane-Change System for Improving Traffic Flow [16.34175752810212]
Existing intelligent lane-change solutions have primarily focused on optimizing the performance of the ego vehicle.
Recent research has seen an increased interest in multi-agent reinforcement learning (MARL)-based approaches.
We present a novel hybrid MARL-based intelligent lane-change system for AVs designed to jointly optimize the local performance for the ego vehicle.
arXiv Detail & Related papers (2023-03-16T04:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.