論文の概要: FA-BARF: Frequency Adapted Bundle-Adjusting Neural Radiance Fields
- arxiv url: http://arxiv.org/abs/2503.12086v1
- Date: Sat, 15 Mar 2025 11:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:31:29.953494
- Title: FA-BARF: Frequency Adapted Bundle-Adjusting Neural Radiance Fields
- Title(参考訳): FA-BARF:周波数適応バンドル適応型ニューラルラジアンス場
- Authors: Rui Qian, Chenyangguang Zhang, Yan Di, Guangyao Zhai, Ruida Zhang, Jiayu Guo, Benjamin Busam, Jian Pu,
- Abstract要約: 本稿では,周波数適応型空間低域通過フィルタの時間的低域通過フィルタに代えて,周波数適応型バンドル調整放射場(FA-BARF)を提案する。
FA-BARFは、オブジェクト中心のシーンにほとんど摂動を伴わない共同最適化プロセスを加速し、未知のカメラポーズで現実世界のシーンを復元できることを示す。
- 参考スコア(独自算出の注目度): 24.163137753565668
- License:
- Abstract: Neural Radiance Fields (NeRF) have exhibited highly effective performance for photorealistic novel view synthesis recently. However, the key limitation it meets is the reliance on a hand-crafted frequency annealing strategy to recover 3D scenes with imperfect camera poses. The strategy exploits a temporal low-pass filter to guarantee convergence while decelerating the joint optimization of implicit scene reconstruction and camera registration. In this work, we introduce the Frequency Adapted Bundle Adjusting Radiance Field (FA-BARF), substituting the temporal low-pass filter for a frequency-adapted spatial low-pass filter to address the decelerating problem. We establish a theoretical framework to interpret the relationship between position encoding of NeRF and camera registration and show that our frequency-adapted filter can mitigate frequency fluctuation caused by the temporal filter. Furthermore, we show that applying a spatial low-pass filter in NeRF can optimize camera poses productively through radial uncertainty overlaps among various views. Extensive experiments show that FA-BARF can accelerate the joint optimization process under little perturbations in object-centric scenes and recover real-world scenes with unknown camera poses. This implies wider possibilities for NeRF applied in dense 3D mapping and reconstruction under real-time requirements. The code will be released upon paper acceptance.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は,近年,フォトリアリスティック・ノベル・ビュー・シンセサイザーの高性能な性能を示した。
しかし、それが満たす重要な制限は、不完全なカメラポーズで3Dシーンを復元するための手作りの周波数アニール戦略に依存していることである。
この戦略は、暗黙のシーン再構成とカメラ登録の共同最適化を高速化しながら収束を保証するために、時間的低域フィルタを利用する。
本研究では,周波数適応型空間低域通過フィルタの時間的低域通過フィルタに代えて,周波数適応型バンドル調整放射場(FA-BARF)を提案する。
我々は、NeRFの位置符号化とカメラ登録の関係を解析し、周波数適応フィルタが時間フィルタによる周波数変動を緩和できることを示す理論的枠組みを確立する。
さらに,NeRFに空間低域フィルタを適用することで,視線不確かさが重なり合うことにより,カメラのポーズを効率よく最適化できることを示す。
大規模な実験により、FA-BARFは、オブジェクト中心のシーンでほとんど摂動の無い共同最適化プロセスを加速し、未知のカメラポーズで現実世界のシーンを復元できることが示されている。
このことは、高密度な3次元マッピングとリアルタイムな要求下での再構成において、NeRFが適用される可能性を示している。
コードは受理後に公開される。
関連論文リスト
- Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
スパース入力を用いた新しいビュー合成はニューラルラジアンス場(NeRF)に大きな課題をもたらす
近年の研究では、位置レンダリングの周波数規則化は、数発のNeRFに対して有望な結果が得られることが示されている。
我々は,AR-NeRFと呼ばれる数発のNeRFに対して適応レンダリング損失正規化を提案する。
論文 参考訳(メタデータ) (2024-10-23T13:05:26Z) - FBINeRF: Feature-Based Integrated Recurrent Network for Pinhole and Fisheye Neural Radiance Fields [13.014637091971842]
本稿では,ラジアル歪みに適応した柔軟なバンドル調整法により適応的なGRUを提案する。
ピンホールカメラおよび魚眼カメラ用NeRFの高忠実度化について検討した。
論文 参考訳(メタデータ) (2024-08-03T23:11:20Z) - Deblurring Neural Radiance Fields with Event-driven Bundle Adjustment [23.15130387716121]
本稿では,学習可能なポーズとNeRFパラメータを協調的に最適化するために,Bundle Adjustment for Deblurring Neural Radiance Fields (EBAD-NeRF)を提案する。
EBAD-NeRFは露光時間中に正確なカメラ軌跡を得ることができ、従来よりもシャープな3D表現を学習することができる。
論文 参考訳(メタデータ) (2024-06-20T14:33:51Z) - FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization [67.47895278233717]
周波数空間における過度再構成問題に対処するために, 進行周波数正規化手法を開発した。
FreGSは優れた斬新なビュー合成を実現し、最先端の技術を一貫して上回っている。
論文 参考訳(メタデータ) (2024-03-11T17:00:27Z) - CF-NeRF: Camera Parameter Free Neural Radiance Fields with Incremental
Learning [23.080474939586654]
我々は、新しいアンダーラインカメラパラメーターUnderlinefree Neural Radiance Field (CF-NeRF)を提案する。
CF-NeRFは3次元表現を漸進的に再構成し、動きからインクリメンタル構造にインスパイアされたカメラパラメータを復元する。
その結果、CF-NeRFはカメラ回転に頑健であり、事前情報や制約を伴わずに最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2023-12-14T09:09:31Z) - USB-NeRF: Unrolling Shutter Bundle Adjusted Neural Radiance Fields [7.671858441929298]
ニューラルラジアンスフィールド(USB-NeRF)のアンローリングシャッターバンドルについて提案する。
USB-NeRFは、回転シャッター歪みを補正し、NeRFの枠組みの下で同時に正確なカメラモーション軌跡を復元することができる。
我々のアルゴリズムは、RS画像のシーケンスから高忠実度高フレームレートのグローバルシャッタービデオの復元にも利用できる。
論文 参考訳(メタデータ) (2023-10-04T09:51:58Z) - Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion [67.15935067326662]
イベントカメラは低電力、低レイテンシ、高時間解像度、高ダイナミックレンジを提供する。
NeRFは効率的かつ効果的なシーン表現の第一候補と見なされている。
本稿では,移動イベントカメラからNeRFを直接かつ堅牢に再構成する新しい手法であるRobust e-NeRFを提案する。
論文 参考訳(メタデータ) (2023-09-15T17:52:08Z) - DBARF: Deep Bundle-Adjusting Generalizable Neural Radiance Fields [75.35416391705503]
BARFやGARFといった最近の研究は、座標MLPに基づくニューラルレイディアンスフィールド(NeRF)でカメラのポーズを調整することができる。
印象的な結果にもかかわらず、これらの手法は画像特徴抽出を必要とするGeneralizable NeRF(GeNeRF)には適用できない。
本稿では,GeNeRFとカメラポーズを協調的に最適化することの難しさをまず分析し,さらにこれらの問題に対処するためのDBARFを提案する。
論文 参考訳(メタデータ) (2023-03-25T14:18:30Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
我々は,NeRFトレーニングの正規化にロバストなデータ拡張のパワーを初めてもたらすAugmented NeRF(Aug-NeRF)を提案する。
提案手法では,最悪の場合の摂動を3段階のNeRFパイプラインにシームレスにブレンドする。
Aug-NeRFは、新しいビュー合成と基礎となる幾何再構成の両方において、NeRF性能を効果的に向上させる。
論文 参考訳(メタデータ) (2022-07-04T02:27:07Z) - T\"oRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis [32.878225196378374]
連続波ToFカメラのための画像形成モデルに基づくニューラル表現を提案する。
提案手法は, 動的シーン再構成のロバスト性を改善し, 誤ったキャリブレーションや大きな動きに改善することを示す。
論文 参考訳(メタデータ) (2021-09-30T17:12:59Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
不完全なカメラポーズからNeRFを訓練するためのバンドル調整ニューラルラジアンスフィールド(BARF)を提案します。
BARFは、ニューラルネットワークシーンの表現を効果的に最適化し、大きなカメラのポーズミスを同時に解決する。
これにより、未知のカメラポーズからの映像シーケンスのビュー合成とローカライズが可能になり、視覚ローカライズシステムのための新しい道を開くことができる。
論文 参考訳(メタデータ) (2021-04-13T17:59:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。