Gun Detection Using Combined Human Pose and Weapon Appearance
- URL: http://arxiv.org/abs/2503.12215v1
- Date: Sat, 15 Mar 2025 17:57:35 GMT
- Title: Gun Detection Using Combined Human Pose and Weapon Appearance
- Authors: Amulya Reddy Maligireddy, Manohar Reddy Uppula, Nidhi Rastogi, Yaswanth Reddy Parla,
- Abstract summary: We propose a novel approach that integrates human pose estimation with weapon appearance recognition using deep learning techniques.<n>Unlike prior studies that focus on either body pose estimation or firearm detection in isolation, our method jointly analyzes posture and weapon presence.<n>Our research aims to improve the precision and reliability of firearm detection systems, contributing to enhanced public safety and threat mitigation in high-risk areas.
- Score: 0.7499722271664147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing frequency of firearm-related incidents has necessitated advancements in security and surveillance systems, particularly in firearm detection within public spaces. Traditional gun detection methods rely on manual inspections and continuous human monitoring of CCTV footage, which are labor-intensive and prone to high false positive and negative rates. To address these limitations, we propose a novel approach that integrates human pose estimation with weapon appearance recognition using deep learning techniques. Unlike prior studies that focus on either body pose estimation or firearm detection in isolation, our method jointly analyzes posture and weapon presence to enhance detection accuracy in real-world, dynamic environments. To train our model, we curated a diverse dataset comprising images from open-source repositories such as IMFDB and Monash Guns, supplemented with AI-generated and manually collected images from web sources. This dataset ensures robust generalization and realistic performance evaluation under various surveillance conditions. Our research aims to improve the precision and reliability of firearm detection systems, contributing to enhanced public safety and threat mitigation in high-risk areas.
Related papers
- Safety at Scale: A Comprehensive Survey of Large Model Safety [298.05093528230753]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.
We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Real-Time Weapon Detection Using YOLOv8 for Enhanced Safety [0.0]
The model was trained on a comprehensive dataset containing thousands of images depicting various types of firearms and edged weapons.
We evaluated the model's performance using key metrics such as precision, recall, F1-score, and mean Average Precision (mAP) across multiple Intersection over Union (IoU) thresholds.
arXiv Detail & Related papers (2024-10-23T10:35:51Z) - A Survey and Evaluation of Adversarial Attacks for Object Detection [11.48212060875543]
Deep learning models are vulnerable to adversarial examples that can deceive them into making confident but incorrect predictions.
This vulnerability pose significant risks in high-stakes applications such as autonomous vehicles, security surveillance, and safety-critical inspection systems.
This paper presents a novel taxonomic framework for categorizing adversarial attacks specific to object detection architectures.
arXiv Detail & Related papers (2024-08-04T05:22:08Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
Anomaly detection is critical for the secure and reliable operation of industrial control systems.
This paper presents a novel deep generative model to meet this need.
arXiv Detail & Related papers (2024-05-03T23:58:27Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Detection and Localization of Firearm Carriers in Complex Scenes for
Improved Safety Measures [17.03422574286601]
We propose a novel approach that leverages human-firearm interaction information, which provides valuable clues for localizing firearm carriers.
Our approach incorporates an attention mechanism that effectively distinguishes humans and firearms from the background by focusing on relevant areas.
To handle inputs of varying sizes, we pass paired human-firearm instances with attention masks as channels through a deep network for feature computation.
arXiv Detail & Related papers (2023-09-17T10:50:46Z) - CCTV-Gun: Benchmarking Handgun Detection in CCTV Images [59.24281591714385]
Gun violence is a critical security problem, and it is imperative for the computer vision community to develop effective gun detection algorithms.
detecting guns in real-world CCTV images remains a challenging and under-explored task.
We present a benchmark, called textbfCCTV-Gun, which addresses the challenges of detecting handguns in real-world CCTV images.
arXiv Detail & Related papers (2023-03-19T16:17:35Z) - Surveillance Evasion Through Bayesian Reinforcement Learning [78.79938727251594]
We consider a 2D continuous path planning problem with a completely unknown intensity of random termination.
Those Observers' surveillance intensity is a priori unknown and has to be learned through repetitive path planning.
arXiv Detail & Related papers (2021-09-30T02:29:21Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.