An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems
- URL: http://arxiv.org/abs/2405.05277v1
- Date: Fri, 3 May 2024 23:58:27 GMT
- Title: An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems
- Authors: Mayra Macas, Chunming Wu, Walter Fuertes,
- Abstract summary: Anomaly detection is critical for the secure and reliable operation of industrial control systems.
This paper presents a novel deep generative model to meet this need.
- Score: 3.303448701376485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection is critical for the secure and reliable operation of industrial control systems. As our reliance on such complex cyber-physical systems grows, it becomes paramount to have automated methods for detecting anomalies, preventing attacks, and responding intelligently. {This paper presents a novel deep generative model to meet this need. The proposed model follows a variational autoencoder architecture with a convolutional encoder and decoder to extract features from both spatial and temporal dimensions. Additionally, we incorporate an attention mechanism that directs focus towards specific regions, enhancing the representation of relevant features and improving anomaly detection accuracy. We also employ a dynamic threshold approach leveraging the reconstruction probability and make our source code publicly available to promote reproducibility and facilitate further research. Comprehensive experimental analysis is conducted on data from all six stages of the Secure Water Treatment (SWaT) testbed, and the experimental results demonstrate the superior performance of our approach compared to several state-of-the-art baseline techniques.
Related papers
- Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - Effective Multi-Stage Training Model For Edge Computing Devices In
Intrusion Detection [0.0]
This research introduces a three-stage training paradigm, augmented by an enhanced pruning methodology and model compression techniques.
The objective is to elevate the system's effectiveness, concurrently maintaining a high level of accuracy for intrusion detection.
arXiv Detail & Related papers (2024-01-31T02:20:21Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Video Anomaly Detection using GAN [0.0]
This thesis study aims to offer the solution for this use case so that human resources won't be required to keep an eye out for any unusual activity in the surveillance system records.
We have developed a novel generative adversarial network (GAN) based anomaly detection model.
arXiv Detail & Related papers (2023-11-23T16:41:30Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.