RePerformer: Immersive Human-centric Volumetric Videos from Playback to Photoreal Reperformance
- URL: http://arxiv.org/abs/2503.12242v1
- Date: Sat, 15 Mar 2025 19:50:18 GMT
- Title: RePerformer: Immersive Human-centric Volumetric Videos from Playback to Photoreal Reperformance
- Authors: Yuheng Jiang, Zhehao Shen, Chengcheng Guo, Yu Hong, Zhuo Su, Yingliang Zhang, Marc Habermann, Lan Xu,
- Abstract summary: RePerformer is a novel representation that unifies playback and re-performance for high-fidelity human-centric volumetric videos.<n>For re-performance, we develop a semantic-aware alignment module and apply deformation transfer on motion Gaussians.<n>Experiments validate the robustness and effectiveness of RePerformer.
- Score: 30.74512780076691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-centric volumetric videos offer immersive free-viewpoint experiences, yet existing methods focus either on replaying general dynamic scenes or animating human avatars, limiting their ability to re-perform general dynamic scenes. In this paper, we present RePerformer, a novel Gaussian-based representation that unifies playback and re-performance for high-fidelity human-centric volumetric videos. Specifically, we hierarchically disentangle the dynamic scenes into motion Gaussians and appearance Gaussians which are associated in the canonical space. We further employ a Morton-based parameterization to efficiently encode the appearance Gaussians into 2D position and attribute maps. For enhanced generalization, we adopt 2D CNNs to map position maps to attribute maps, which can be assembled into appearance Gaussians for high-fidelity rendering of the dynamic scenes. For re-performance, we develop a semantic-aware alignment module and apply deformation transfer on motion Gaussians, enabling photo-real rendering under novel motions. Extensive experiments validate the robustness and effectiveness of RePerformer, setting a new benchmark for playback-then-reperformance paradigm in human-centric volumetric videos.
Related papers
- X-Dyna: Expressive Dynamic Human Image Animation [49.896933584815926]
X-Dyna is a zero-shot, diffusion-based pipeline for animating a single human image.
It generates realistic, context-aware dynamics for both the subject and the surrounding environment.
arXiv Detail & Related papers (2025-01-17T08:10:53Z) - Hallo3: Highly Dynamic and Realistic Portrait Image Animation with Video Diffusion Transformer [25.39030226963548]
We introduce the first application of a pretrained transformer-based video generative model for portrait animation.<n>Our method is validated through experiments on benchmark and newly proposed wild datasets.
arXiv Detail & Related papers (2024-12-01T08:54:30Z) - Robust Dual Gaussian Splatting for Immersive Human-centric Volumetric Videos [44.50599475213118]
We present a novel approach, dubbed textitDualGS, for real-time and high-fidelity playback of complex human performance.
Our approach achieves a compression ratio of up to 120 times, only requiring approximately 350KB of storage per frame.
We demonstrate the efficacy of our representation through photo-realistic, free-view experiences on VR headsets.
arXiv Detail & Related papers (2024-09-12T18:33:13Z) - D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from Monocular Video [53.83936023443193]
This paper contributes to the field by introducing a new synthesis method for dynamic novel view from monocular video, such as smartphone captures.
Our approach represents the as a $textitdynamic neural point cloud$, an implicit time-conditioned point cloud that encodes local geometry and appearance in separate hash-encoded neural feature grids.
arXiv Detail & Related papers (2024-06-14T14:35:44Z) - NPGA: Neural Parametric Gaussian Avatars [46.52887358194364]
We propose a data-driven approach to create high-fidelity controllable avatars from multi-view video recordings.
We build our method around 3D Gaussian splatting for its highly efficient rendering and to inherit the topological flexibility of point clouds.
We evaluate our method on the public NeRSemble dataset, demonstrating that NPGA significantly outperforms the previous state-of-the-art avatars on the self-reenactment task by 2.6 PSNR.
arXiv Detail & Related papers (2024-05-29T17:58:09Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z) - DeformGS: Scene Flow in Highly Deformable Scenes for Deformable Object Manipulation [66.7719069053058]
DeformGS is an approach to recover scene flow in highly deformable scenes using simultaneous video captures of a dynamic scene from multiple cameras.
DeformGS improves 3D tracking by an average of 55.8% compared to the state-of-the-art.
With sufficient texture, DeformGS achieves a median tracking error of 3.3 mm on a cloth of 1.5 x 1.5 m in area.
arXiv Detail & Related papers (2023-11-30T18:53:03Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - Human Performance Modeling and Rendering via Neural Animated Mesh [40.25449482006199]
We bridge the traditional mesh with a new class of neural rendering.
In this paper, we present a novel approach for rendering human views from video.
We demonstrate our approach on various platforms, inserting virtual human performances into AR headsets.
arXiv Detail & Related papers (2022-09-18T03:58:00Z) - Editable Free-viewpoint Video Using a Layered Neural Representation [35.44420164057911]
We propose the first approach for editable free-viewpoint video generation for large-scale dynamic scenes using only sparse 16 cameras.
The core of our approach is a new layered neural representation, where each dynamic entity including the environment itself is formulated into a space-time coherent neural layered radiance representation called ST-NeRF.
Experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.
arXiv Detail & Related papers (2021-04-30T06:50:45Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) is a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes.
We show that even a single consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views.
arXiv Detail & Related papers (2020-12-22T18:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.